Skip to main content

Protein Denaturation on p-T Axes – Thermodynamics and Analysis

  • Chapter
High Pressure Bioscience

Part of the book series: Subcellular Biochemistry ((SCBI,volume 72))

Abstract

Proteins are essential players in the vast majority of molecular level life processes. Since their structure is in most cases substantial for their correct function, study of their structural changes attracted great interest in the past decades. The three dimensional structure of proteins is influenced by several factors including temperature, pH, presence of chaotropic and cosmotropic agents, or presence of denaturants. Although pressure is an equally important thermodynamic parameter as temperature, pressure studies are considerably less frequent in the literature, probably due to the technical difficulties associated to the pressure studies.

Although the first steps in the high-pressure protein study have been done 100 years ago with Bridgman’s ground breaking work, the field was silent until the modern spectroscopic techniques allowed the characterization of the protein structural changes, while the protein was under pressure.

Recently a number of proteins were studied under pressure, and complete pressure-temperature phase diagrams were determined for several of them. This review summarizes the thermodynamic background of the typical elliptic p-T phase diagram, its limitations and the possible reasons for deviations of the experimental diagrams from the theoretical one. Finally we show some examples of experimentally determined pressure-temperature phase diagrams.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akasaka K, Kitahara R, Kamatari YO (2013) Exploring the folding energy landscape with pressure. Arch Biochem Biophys 53:110–115. doi:10.1016/j.abb.2012.11.016

    Article  Google Scholar 

  • Ando N, Barstow B, Baase WA, Fields A, Matthews BW, Gruner SM (2008) Structural and thermodynamic characterization of T4 lysozyme mutants and the contribution of internal cavities to pressure denaturation. Biochemistry 47:11097–11109. doi:10.1021/bi801287m

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Brandts JF, Oliveira RJ, Westort C (1970) Thermodynamics of protein denaturation. Effect of pressure on the denaturation of ribonuclease A. Biochemistry 17:1038–1047

    Article  Google Scholar 

  • Bridgman PW (1914) The coagulation of albumen by pressure. J Biol Chem 19:511–512

    CAS  Google Scholar 

  • Bryngelson JD, Onuchic JN, Socci ND, Wolynes PG (1995) Funnels, pathways, and the energy landscape of protein folding: a synthesis. Proteins Struct Funct Genet 21:167–195. doi:10.1002/prot.340210302

    Article  CAS  PubMed  Google Scholar 

  • Cladis PE (1988) A 100 year perspective of the reentrant nematic phase. Mol Cryst Liq Cryst 165:85–121. doi:10.1080/00268948808082197

    CAS  Google Scholar 

  • Cole ST, Brosch R, Parkhill J, Garnier T, Churcher C, Harris D, Gordon SV, Eiglmeier K, Gas S, Barry CE, Tekaia F, Badcock K, Basham D, Brown D, Chillingworth T, Connor R, Davies R, Devlin K, Feltwell T, Gentles S, Hamlin N, Holroyd S, Hornby T, Jagels K, Krogh A, McLean J, Moule S, Murphy L, Oliver K, Osborne J, Quail MA, Rajandream MA, Rogers J, Rutter S, Seeger K, Skelton J, Squares R, Squares S, Sulston JE, Taylor K, Whitehead S, Barrell BG (1998) Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 393(6685):537–544

    Article  CAS  PubMed  Google Scholar 

  • Cole ST, Eiglmeier K, Parkhill J, James KD, Thomson NR, Wheeler PR, Honore N, Garnier T, Churcher C, Harris D, Mungall K, Basham D, Brown D, Chillingworth T, Connor R, Davies RM, Devlin K, Duthoy S, Feltwell T, Fraser A, Hamlin N, Holroyd S, Hornsby T, Jagels K, Lacroix C, Maclean J, Moule S, Murphy L, Oliver K, Quail MA, Rajandream MA, Rutherford KM, Rutter S, Seeger K, Simon S, Simmonds M, Skelton J, Squares R, Squares S, Stevens K, Taylor K, Whitehead S, Woodward JR, Barrell BG (2001) Massive gene decay in the leprosy bacillus. Nature 409(6823):1007–1011. doi:10.1038/35059006

  • Dill KA, Chan HS (1977) From Levinthal to pathways to funnels. Nature Struct Biol 4:10–19

    Article  Google Scholar 

  • Dirix C, Meersman F, MacPhee CE, Dobson CM, Heremans K (2005) High hydrostatic pressure dissociates early aggregates of TTR105-115, but not the mature amyloid fibrils. J Mol Biol 347:903–909. doi:10.1016/j.jmb.2005.01.073

    Article  CAS  PubMed  Google Scholar 

  • Frye KJ, Royer CA (1998) Probing the contribution of internal cavities to the volume change of protein unfolding under pressure. Protein Sci 7:2217–2222

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gruebele M (2009) Protein dynamics: from molecules, to interactions, to biology. Int J Mol Sci 10:1360–1368. doi:10.3390/ijms10031360

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hawley SA (1971) Reversible pressure-temperature denaturation of chymotrypsinogen. Biochemistry 10:2436–2442. doi:10.1021/bi00789a002

    Article  CAS  PubMed  Google Scholar 

  • Herberhold H, Royer CA, Winter R (2004) Effects of chaotropic and kosmotropic cosolvents on the pressure-induced unfolding and denaturation of proteins: an FT-IR study on staphylococcal nuclease. Biochemistry 43:3336–3345. doi:10.1021/bi036106z

    Article  CAS  PubMed  Google Scholar 

  • Hynes TR, Fox RO (1991) The crystal structure of staphylococcal nuclease refined at 1.7 Å resolution. Proteins 10:92–105. doi:10.1002/prot.340100203

    Article  CAS  PubMed  Google Scholar 

  • Kitahara R, Akasaka K (2003) Close identity of a pressure-stabilized intermediate with a kinetic intermediate in protein folding. Proc Natl Acad Sci U S A 100:3167–3172. doi:10.1073/pnas.0630309100

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kitahara R, Hata K, Maeno A, Akasaka K, Chimenti MS, Garcia-Moreno B, Schroer MA, Jeworrek C, Tolan M, Winter R, Roche J, Roumestand C, de Guillen KM, Royer CA (2011) Structural plasticity of staphylococcal nuclease probed by perturbation with pressure and pH. Proteins 79:1293–1305. doi:10.1002/prot.22966

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Knorr D, Froehling A, Jaeger H, Reineke K, Schlueter O, Schoessler K (2011) Emerging technologies in food processing. Ann Rev Food Sci Technol 2:203–235

    Article  CAS  Google Scholar 

  • Kumar N, Shukla S, Kumar S, Suryawanshi A, Chaudhry U, Ramachandran S, Maiti S (2008) Intrinsically disordered protein from a pathogenic mesophile Mycobacterium tuberculosis adopts structured conformation at high temperature. Proteins 71:1123–1133. doi:10.1002/prot.21798

    Article  CAS  PubMed  Google Scholar 

  • Labeit S, Kolmerer B (1995) Titins – giant proteins in charge of muscle ultrastructure and elasticity. Science 270:293–296. doi:10.1126/science.270.5234.293

    Article  CAS  PubMed  Google Scholar 

  • Labeit S, Barlow DP, Gautel M, Gibson T, Holt J, Hsieh CL, Francke U, Leonard K, Wardale J, Whiting A, Trinick J (1990) A regular pattern of 2 types of 100-residue motif in the sequence of titin. Nature 345:273–276. doi:10.1038/345273a0

    Article  CAS  PubMed  Google Scholar 

  • Lassalle MW, Yamada H, Akasaka K (2000) The pressure-temperature free energy-landscape of staphylococcal nuclease monitored by H-1 NMR. J Mol Biol 298:293–302. doi:10.1006/jmbi.2000.3659

    Article  CAS  PubMed  Google Scholar 

  • Liu F, Gruebele M (2008) Downhill dynamics and the molecular rate of protein folding. Chem Phys Lett 461:1–8. doi:10.1016/j.cplett.2008.04.075

    Article  CAS  Google Scholar 

  • Ma Y, Griesmeier U, Susani M, Radauer C, Briza P, Erler A, Bublin M, Alessandri S, Himly M, Vazquez-Cortes S, de Arellano IRR, Vassilopoulou E, Saxoni-Papageorgiou P, Knulst AC, Fernandez-Rivas M, Hoffmann-Sommergruber K, Breiteneder H (2008) Comparison of natural and recombinant forms of the major fish allergen parvalbumin from cod and carp. Mol Nutr Food Res 52:S196–S207. doi:10.1002/mnfr.200700284

    PubMed  Google Scholar 

  • Maeno A, Matsuuo H, Akasaka K (2009) The pressure-temperature phase diagram of hen lysozyme at low pH. Biophys 5:1–9. doi:10.2142/biophysics.5.1

    Article  CAS  Google Scholar 

  • Meersman F, Dobson CM (2006) Probing the pressure-temperature stability of amyloid fibrils provides new insights into their molecular properties. Biochim Biophys Acta 1764:452–460. doi:10.1016/j.bbapap.2005.10.021

    Article  CAS  PubMed  Google Scholar 

  • Meersman F, Heremans K (2003) Temperature-induced dissociation of protein aggregates: accessing the denatured state. Biochemistry 42:14234–14241. doi:10.1021/bi035623e

    Article  CAS  PubMed  Google Scholar 

  • Meersman F, Smeller L, Heremans K (2002) Comparative Fourier transform infrared spectroscopy study of cold-, pressure-, and heat-induced unfolding and aggregation of myoglobin. Biophys J 82:2635–2644

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Meersman F, Smeller L, Heremans K (2005) Extending the pressure-temperature state diagram of myoglobin. Helv Chim Acta 88:546–556

    Article  CAS  Google Scholar 

  • Nash D, Lee BS, Jonas J (1996) Hydrogen-exchange kinetics in the cold denatured state of ribonuclease A. Biochim Biophys Acta 1297:40–48. doi:10.1016/0167-4838(96)00085-4

    Article  PubMed  Google Scholar 

  • Osvath S, Sabelko JJ, Gruebele M (2003) Tuning the heterogeneous early folding dynamics of phosphoglycerate kinase. J Mol Biol 333:187–199. doi:10.1016/j.jmb.2003.08.011

    Article  CAS  PubMed  Google Scholar 

  • Osvath S, Quynh LM, Smeller L (2009) Thermodynamics and kinetics of the pressure unfolding of phosphoglycerate kinase. Biochemistry 48:10146–10150. doi:10.1021/bi900922f

    Article  CAS  PubMed  Google Scholar 

  • Panick G, Vidugiris GJA, Malessa R, Rapp G, Winter R, Royer CA (1999) Exploring the temperature-pressure phase diagram of staphylococcal nuclease. Biochemistry 38:4157–4164

    Article  CAS  PubMed  Google Scholar 

  • Privalov PL (1990) Cold denaturation of proteins. Biophys J 57:A26

    Google Scholar 

  • Privalov PL (1997) Thermodynamics of protein folding. J Chem Thermodyn 29:447–474. doi:10.1006/jcht.1996.0178

    Article  CAS  Google Scholar 

  • Rastogi NK, Raghavarao KSMS, Balasubramaniam VM, Niranjan K, Knorr D (2007) Opportunities and challenges in high pressure processing of foods. Crit Rev Food Sci Nutr 47:69–112. doi:10.1080/10408390600626420

    Article  CAS  PubMed  Google Scholar 

  • Refaee M, Tezuka T, Akasaka K, Williamson MP (2003) Pressure-dependent changes in the solution structure of hen egg-white lysozyme. J Mol Biol 327:857–865. doi:10.1016/s0022-2836(03)00209-2

    Article  CAS  PubMed  Google Scholar 

  • Ribo M, Font J, Benito A, Torrent J, Lange R, Vilanova M (2006) Pressure as a tool to study protein-unfolding/refolding processes: the case of ribonuclease A. Biochim Biophys Acta 1764:461–469. doi:10.1016/j.bbapap.2005.11.011

    Article  CAS  PubMed  Google Scholar 

  • Roche J, Dellarole M, Caro JA, Guca E, Norberto DR, Yang Y, Garcia AE, Roumestand C, Garcia-Moreno B, Royer CA (2012) Remodeling of the folding free energy landscape of staphylococcal nuclease by cavity-creating mutations. Biochemistry 51:9535–9546. doi:10.1021/bi301071z

    Article  CAS  PubMed  Google Scholar 

  • Royer CA (2006) Probing protein folding and conformational transitions with fluorescence. Chem Rev 106:1769–1784. doi:10.1021/cr0404390

    Article  CAS  PubMed  Google Scholar 

  • Sasagawa A, Gomi M, Ohura K, Yamazaki A, Yamada A (2005) Production of Miso based on Koji prepared from mixed different grains using high-pressure treatment. J Japanese Soc Food Sci Technol-Nippon Shokuhin Kagaku Kogaku Kaishi 52:485–490

    Article  CAS  Google Scholar 

  • Sasahara K, Sakurai M, Nitta K (2001) Pressure effect on denaturant-induced unfolding of hen egg white lysozyme. Proteins- Struct Funct Genet 44:180–187. doi:10.1002/Prot.1083

    Article  CAS  PubMed  Google Scholar 

  • Smeller L (2002) Pressure-temperature phase diagrams of biomolecules. Biochim Biophys Acta 1595:11–29

    Article  CAS  PubMed  Google Scholar 

  • Smeller L (2009) Evidence for metastable states of lysozyme revealed by high pressure FTIR spectroscopy. Biophys J 96:388a. doi:http://dx.doi.org/10.1016/j.bpj.2008.12.2900

  • Smeller L, Heremans K (1997) Some thermodynamic and kinetic consequences of the phase diagram of protein denaturation. In: Heremans K (ed) High pressure research in bioscience and biotechnology. Leuven University Press, Leuven, pp 55–58

    Google Scholar 

  • Smeller L, Goossens K, Heremans K (1995) Determination of the secondary structure of proteins at high pressure. Vib Spectrosc 8:199–203

    Article  CAS  Google Scholar 

  • Smeller L, Rubens P, Heremans K (1999) Pressure effect on the temperature-induced unfolding and tendency to aggregate of myoglobin. Biochemistry 38:3816–3820

    Article  CAS  PubMed  Google Scholar 

  • Smeller L, Fidy J, Heremans K (2004) Protein folding, unfolding and aggregation. Pressure induced intermediate states on the refolding pathway of horseradish peroxidase. J Phys 16:S1053–S1058

    CAS  Google Scholar 

  • Smeller L, Meersman F, Heremans K (2006) Refolding studies using pressure: the folding landscape of lysozyme in the pressure-temperature plane. Biochim Biophys Acta 1764:497–505. doi:10.1016/j.bbapap.2006.01.016

    Article  CAS  PubMed  Google Scholar 

  • Smeller L, Meersman F, Heremans K (2008) Stable misfolded states of human serum albumin revealed by high-pressure infrared spectroscopic studies. Eur Biophys J 37:1127–1132

    Article  CAS  PubMed  Google Scholar 

  • Somkuti J, Smeller L (2013) High pressure effects on allergen food proteins. Biophys Chem 183:19–29. doi:10.1016/j.bpc.2013.06.009

    Article  CAS  PubMed  Google Scholar 

  • Somkuti J, Houska M, Smeller L (2011) Pressure and temperature stability of the main apple allergen Mal d1. Eur Biophys J 40:143–151. doi:10.1007/s00249-010-0633-8

    Article  CAS  PubMed  Google Scholar 

  • Somkuti J, Bublin M, Breiteneder H, Smeller L (2012) Pressure-temperature stability, Ca2+ binding, and pressure-temperature phase diagram of cod parvalbumin: Gad m 1. Biochemistry 51:5903–5911. doi:dx.doi.org/10.1021/bi300403h

  • Somkuti J, Jain S, Ramachandran S, Smeller L (2013a) Folding-unfolding transitions of Rv3221c on the pressure-temperature plane. High Pressure Res 33:250–257. doi:10.1080/08957959.2013.780055

    Article  CAS  Google Scholar 

  • Somkuti J, Martonfalvi Z, Kellermayer MSZ, Smeller L (2013b) Different pressure-temperature behavior of the structured and unstructured regions of titin. Biochim Biophys Acta 1834:112–118. doi:10.1016/j.bbapap.2012.10.001

    Article  CAS  PubMed  Google Scholar 

  • Stefani M, Dobson CM (2003) Protein aggregation and aggregate toxicity: new insights into protein folding, misfolding diseases and biological evolution. J Mol Med 81:678–699. doi:10.1007/s00109-003-0464-5

    Article  CAS  PubMed  Google Scholar 

  • Stites WE, Gittis AG, Lattman EE, Shortle D (1991) In a staphylococcal nuclease mutant the side-chain of a lysine replacing valine-66 is fully buried in the hydrophobic core. J Mol Biol 221:7–14. doi:10.1016/0022-2836(91)80195-z

    Article  CAS  PubMed  Google Scholar 

  • Susi H, Byler DM (1986) Resolution-enhanced Fourier-transform infrared-spectroscopy of enzymes. Methods Enzymol 130:290–311

    Article  CAS  PubMed  Google Scholar 

  • Suzuki K (1960) Studies on the kinetics of protein denaturation under high pressure. Rev Phys Chem Jpn 29:91–98

    CAS  Google Scholar 

  • Taniguchi Y, Suzuki K (1983) Studies of polymer effects under pressure. Part 7. Pressure inactivation of alpha-chymotrypsin. J Phys Chem 87:5185–5193. doi:10.1021/J150643a025

    Article  CAS  Google Scholar 

  • Tompa P (2009) Structure and function of intrinsically disordered proteins. Chapman and Hall/CRC, Boca Raton

    Book  Google Scholar 

  • Trombitas K, Greaser M, Labeit S, Jin JP, Kellermayer M, Helmes M, Granzier H (1998) Titin extensibility in situ: entropic elasticity of permanently folded and permanently unfolded molecular segments. J Cell Biol 140:853–859. doi:10.1083/jcb.140.4.853

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Vogtt K, Winter R (2005) Pressure-assisted cold denaturation of hen egg white lysozyme: the influence of co-solvents probed by hydrogen exchange nuclear magnetic resonance. Brazilian J Med Biol Res 38:1185–1193. doi:10.1590/s0100-879x2005000800005

    Article  CAS  Google Scholar 

  • Yaldagard M, Mortazavi SA, Tabatabaie F (2008) The principles of ultra high pressure technology and its application in food processing/preservation: a review of microbiological and quality aspects. Afr J Biotechnol 7:2739–2767

    CAS  Google Scholar 

  • Yamaguchi T, Yamada H, Akasaka K (1995) Thermodynamics of unfolding of ribonuclease A under high pressure. A study by proton NMR. J Mol Biol 250:689–694. doi:10.1006/jmbi.1995.0408

    Article  CAS  PubMed  Google Scholar 

  • Yamakura M, Haraguchi K, Okadome H, Suzuki K, Tran UT, Horigane KA, Yoshida M, Homma S, Sasagawa A, Yamazaki A, Ohtsubo K (2005) Effects of soaking and high-pressure treatment on the qualities of cooked rice. J Appl Glycosci 52:85–93

    Article  CAS  Google Scholar 

  • Yamasaki K, Taniguchi Y, Takeda N, Nakano K, Yamasaki T, Kanaya S, Oobatake M (1998) Pressure-denatured state of Escherichia coli ribonuclease HI as monitored by Fourier transform infrared and NMR spectroscopy. Biochemistry 37:18001–18009. doi:10.1021/bi981046w

    Article  CAS  PubMed  Google Scholar 

  • Zhai Y, Winter R (2013) Effect of molecular crowding on the temperature-pressure stability diagram of ribonuclease A. ChemPhysChem 14:386–393. doi:10.1002/cphc.201200767

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Peng XD, Jonas A, Jonas J (1995) NMR-study of the cold, heat, and pressure unfolding of ribonuclease-A. Biochemistry 34:8631–8641. doi:10.1021/bi00027a012

    Article  CAS  PubMed  Google Scholar 

  • Zipp A, Kauzmann W (1973) Pressure denaturation of metmyoglobin. Biochemistry 12:4217–4228

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

This work was supported by the Hungarian Research Fund project OTKA 77730. The author is very grateful to Sz. Osvath for reading the manuscript and for the fruitful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to László Smeller .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Smeller, L. (2015). Protein Denaturation on p-T Axes – Thermodynamics and Analysis. In: Akasaka, K., Matsuki, H. (eds) High Pressure Bioscience. Subcellular Biochemistry, vol 72. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9918-8_2

Download citation

Publish with us

Policies and ethics