Skip to main content

Sequence-Dependent Modelling of Local DNA Bending Phenomena: Curvature Prediction and Vibrational Analysis

  • Chapter
Structural Biology and Functional Genomics

Part of the book series: NATO Science Series ((ASHT,volume 71))

  • 297 Accesses

Abstract

Bending is a local conformational micropolymorphism of DNA in which the original B-DNA structure is only distorted but is not extensively modified Bending can be predicted by simple static geometry models as well as by a recently developed elastic model that incorporate sequence dependent anisotropic bendability (SDAB). The SDAB model qualitatively explains phenomena including affinity of protein binding, kinking, as well as sequence-dependent vibrational properties of DNA. The vibrational properties of DNA segments can be studied by finite element analysis of a model subjected to an initial bending moment. The frequency spectrum is obtained by applying Fourier analysis to the displacement values in the time domain. This analysis shows that the spectrum of the bending vibrations quite sensitively depends on the sequence, for example that spectrum of a curved sequence is characteristically different from the spectrum of straight sequence motifs of identical basepair composition. Curvature distributions are genome-specific, and pronounced differences are found between protein-coding and regulatory regions, respectively, i.e. sites of extreme curvature and/or bendability are less frequent in protein-coding regions. A WWW server is set up for prediction of curvature and generation of 3D models from DNA sequences (http://www.icgeb.trieste.it/dna)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Travers, A.A. and Klug, A. (1990), Bending of DNA, in: DNA topology and its biological effects, pp. 57–106 (Cozzarelli, N.R. and Wang, J.C., Eds.) Cold Spring Harbor laboratory, Cold Spring Harbor.

    Google Scholar 

  2. Olson, W.K. and Zhurkin, V.B. (1996),Twenty years of DNA bending, in: Biological Structure and Dynamics, Vol. 2, pp. 341–370 (Sarma, R.H. and Sarma, M.H., Eds.) Adenine Press, Schenectady.

    Google Scholar 

  3. Olson, W.K. (1996) Simulating DNA at low resolution, Curr Opin StructBiol 6 242–56.

    Article  CAS  Google Scholar 

  4. Langowski, J., Olson, W.K., Pedersen, S.C., Tobias, I., Westcott, T.P. and Yang, Y. (1996) DNA supercoiling, localized bending and thermal fluctuation s [letter], Trends Biochem Sci 21 50.

    CAS  Google Scholar 

  5. Trifonov, E.N. and Sussman, J.L. (1980) The pitch of chromatin DNA is reflected in its nucleotide sequence, Proc Natl Acad Sci USA 77 3816–20.

    Article  PubMed  CAS  Google Scholar 

  6. Wu, H.M. and Crothers, D.M. (1984) The locus of sequence-directed and protein-induced DNA bending, Nature 308 509–13.

    Article  PubMed  CAS  Google Scholar 

  7. Satchwell, S.C., Drew, H.R. and Travers, A.A. (1986) Sequence periodicities in chicken nucleosome core DNA, J Mol Biol 191 659–75.

    Article  PubMed  CAS  Google Scholar 

  8. Brukner, I., Dlakic, M., Savic, A., Susie, S., Pongor, S. and Suck, D. (1993) Evidence for opposite groove-directed curvature of GGGCCC and AAAAA sequence elements, Nucleic Acids Res 21 1025–9.

    Article  PubMed  CAS  Google Scholar 

  9. Bolshoy, A., McNamara, P., Harrington, R.E. and Trifonov, E.N. (1991) Curved DNA without A-A: experimental estimation of all 16 DNA wedge angles, Proc Natl Acad Sci USA 88 2312–6.

    Article  PubMed  CAS  Google Scholar 

  10. De Santis, P., Palleschi, A., Savino, M. and Scipioni, A. (1990) Validity of the nearest-neighbor approximation in the evaluation of the electrophoretic manifestations of DNA curvature, Biochemistry 29 9269–73.

    Article  PubMed  Google Scholar 

  11. Olson, W.K. et al. (1995) Flexing and folding double helical DNA, Biophys Chem 55, 7–29.

    Article  PubMed  CAS  Google Scholar 

  12. Bansal, M., Bhattacharyya, D. and Ravi, B. (1995) NUPARM and NUCGEN: software for analysis and generation of sequence dependent nucleic acid structures, Comput Appl Biosci 11, 281–7.

    PubMed  CAS  Google Scholar 

  13. Ulyanov, N.B. and James, T.L. (1995) Statistical analysis of DNA duplex structural features, Methods Enzymol 261 90–120.

    Article  PubMed  CAS  Google Scholar 

  14. Gabrielian, A. and Pongor, S. (1996) Correlation of intrinsic DNA curvature with DNA property periodicity, Febs Lett 393 65–8.

    Article  PubMed  CAS  Google Scholar 

  15. Goodsell, D.S. and Dickerson, R.E. (1994) Bending and curvature calculations in B-DNA, Nucleic Acids Res 22 5497–503.

    Article  PubMed  CAS  Google Scholar 

  16. el Hassan, M.A. and Calladine, C.R. (1995) The assessment of the geometry of dinucleotide steps in double-helical DNA; a new local calculation scheme, JMoI Biol 251648–64.

    Article  Google Scholar 

  17. Wheeler, D. (1993) A gel-concentration-independent retardation detected in two fragments of the rrnB P 1 promoter of E. coli using transverse polyacrylamide pore gradient gel electrophoresis, Biochem Biophys Res Commun 193 413–9.

    Article  PubMed  CAS  Google Scholar 

  18. Shpigelman, E.S., Trifonov, E.N. and Bolshoy, A. (1993) CURVATURE: software for the analysis of curved DNA, Comput Appl Biosci 9, 435–40.

    PubMed  CAS  Google Scholar 

  19. Dlakic, M. (1998) DIAMOD: display and modeling of DNA bending, Bioinformatics, 14 326–31.

    Article  PubMed  CAS  Google Scholar 

  20. Barkley, M. and Zimm, B. (1979) Models of DNA J. Chem. Phys 70 2991–2997.

    Article  CAS  Google Scholar 

  21. Vologodskii, A.V. and Frank-Kamenetskii, M.D. (1992) Modeling supercoiled DNA, Methods Enzymol 211 467–80.

    Article  PubMed  CAS  Google Scholar 

  22. Zienkiewicz, O.C. and Taylor, R.L. (1991) The finite element method McGraw-Hill.

    Google Scholar 

  23. Bauer, W.R., Lund, R.A. and White, J.H. (1993) Twist and writhe of a DNA loop containing intrinsic bends, Proc Natl Acad Sci U S A 90 833–7.

    Article  PubMed  CAS  Google Scholar 

  24. Yang, Y., Tobias, I. and Olson, W.K. (1993) Finite element analysis of DNA supercoiling, JChem Phy 98 1673–1686.

    Article  CAS  Google Scholar 

  25. Zhang, P., Tobias, I. and Olson, W.K. (1994) Computer simulation of protein-induced structural changes in closed circular, J Mol Biol 242 271–90.

    Article  PubMed  CAS  Google Scholar 

  26. Rippe, K., von Hippel, P. and Langowski, J. (1995) Action at a distance: DNA-looping and initiation of transcription., Trends Biochem Sci 20 500–6.

    Article  PubMed  CAS  Google Scholar 

  27. Schellman, J.A. (1974) Flexibility of DNA, Biopolymers 13 217–26.

    Article  PubMed  CAS  Google Scholar 

  28. Zhurkin, V.B., Lysov, Y.P. and Ivanov, V.I. (1979) Anisotropic flexibility of DNA and the nucleosomal structure, Nucleic Acids Res 6 1081–96.

    Article  PubMed  CAS  Google Scholar 

  29. Brukner, I. Sanchez, R., Suck, D. and Pongor, S. (1995) Sequence-dependent bending propensity of DNA as revealed by DNase I: parameters for trinucleotides, Embo J 14, 1812–8.

    PubMed  CAS  Google Scholar 

  30. Gromiha, M.M., Munteanu, M.G., Gabrielian, A. and Pongor, S. (1996) Anisotropic elastic bending models of DNA, JBiol Phys 22 227–243.

    Article  CAS  Google Scholar 

  31. Gabrielian, A., Vlahovicek, K., Munteanu, M.M., Gromiha, M.M., Brukner, I Sanchez, R. and Pongor, S. (1998) Prediction of bendability and curvature in genomic DNA, in: Structure,Motion, Interaction and Expression, Vol. 1, pp. 117–132 (Sarma, R.H. and Sarma, M.H., Eds.) Adenine Press, Inc., Cincinnati, N.Y.

    Google Scholar 

  32. Han, W., Lindsay, S.M., Dlakic, M. and Harrington, R.E. (1997) Kinked DNA [letter], Nature 386 563.

    Article  PubMed  CAS  Google Scholar 

  33. Gromiha, M.M., Munteanu, M.G., Simon, I. and Pongor, S. (1997) The role of DNA bending in Cro protein-DNA interactions, Biophys Chem 69 153–160.

    Article  PubMed  CAS  Google Scholar 

  34. Eisenberg, D., Schwarz, E., Komaromy, M. and Wall, R. (1984) Analysis of membrane and surface protein sequences with the hydrophobic moment plot, J Mol Biol 179 125–42

    Article  PubMed  CAS  Google Scholar 

  35. Calladine, C.R. and Drew, H.R. (1996) A useful role for “static” models in elucidating the behaviour of DNA in solution, J Mol Biol 257 479–85.

    Article  PubMed  CAS  Google Scholar 

  36. Gabrielian, A., Simoncsits, A. and Pongor, S. (1996) Distribution of bending propensity in DNA sequences, Febs Lett 393 124–30.

    Article  PubMed  CAS  Google Scholar 

  37. Schatz, T. and Langowski, J. (1997)J Biomol Struct Dynam 15 265–275.

    Article  CAS  Google Scholar 

  38. Langst, G., Schatz, T., Langowski, J. and Grummt, I. (1997) Structural analysis of mouse rDNA: coincidence between nuclease hypersensitive sites, DNA curvature and regulatory elements in the intergenic spacer, Nucleic Acids Res 25 511–7.

    Article  PubMed  CAS  Google Scholar 

  39. Yakushevich, L.V. (1994) Nonlinear DNA dynamics: hierarchy of the models, Physica D 79, 77–86.

    Article  CAS  Google Scholar 

  40. Sanghani, S.R., Zakrzewska, K., Harvey, S.C. and Lavery, R. (1996) Molecular modelling of (A4T4NN)n and (T4A4NN)n: sequence elements responsible for curvature, Nucleic Acids Res 24 1632–7.

    Article  PubMed  CAS  Google Scholar 

  41. Gorin, A.A., Zhurkin, V.B. and Olson, W.K. (1995) B-DNA twisting correlates with base-pair morphology, J Mol Biol 247 34–48.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

VlahoviČek, K., Munteanu, M.G., Pongor, S. (1999). Sequence-Dependent Modelling of Local DNA Bending Phenomena: Curvature Prediction and Vibrational Analysis. In: Bradbury, E.M., Pongor, S. (eds) Structural Biology and Functional Genomics. NATO Science Series, vol 71. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4631-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4631-9_6

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-5782-7

  • Online ISBN: 978-94-011-4631-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics