Astrobiology pp 195-211 | Cite as

The Origin of the Neuron: The First Neuron in the Phylogenetic Tree of Life

  • Raimundo Villegas
  • Cecilia Castillo
  • Gloria M. Villegas
Conference paper


This contribution can be considered as an attempt to provide some kind of basic anchorage to look for neurons and nervous systems in possible new forms of life in the Universe. The peculiarities exhibited by the late protozoans and early groups of metazoans, led us to conclude taking into consideration the knowledge available at present, that the first neuron appeared in the Coelenterates, including Cnidarias and Ctenophores, and the first cerebral ganglia, as central component of a nervous system, appeared in the Platyhelminthes and Nematodes.


Sodium Channel Potassium Channel Cerebral Ganglion Giant Axon Mechanosensitive Channel 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Agnew WS, Moore AC, Levinson SR and Raftery MA (1978) Purification of the tetrodotoxin-binding component associated with the voltage-sensitive sodium channel from Electrophorus electricus electroplax membranes. Proc Nat Acad Sci U.S.A. 75: 2606–2610.CrossRefGoogle Scholar
  2. 2.
    Armstrong CM and Hille B (1998) Voltage-gated ion channels and electrical excitability. Neuron 20: 371–380.PubMedCrossRefGoogle Scholar
  3. 3.
    Armitage JP (1999) Bacterial tactic response. Adv Microb Physiol 41: 229–289.PubMedCrossRefGoogle Scholar
  4. 4.
    Besnard M, Martinac B and Ghazi A. (1997) Voltage-dependent porin-like ion channels in the archaeon Haloferax volcanii. J Biol Chem 272: 992–995.PubMedCrossRefGoogle Scholar
  5. 5.
    Bezanilla F and Stefani E (1994) Voltage-dependent gating of ionic channels. Ann Rev Biophys Biomol Struct. 23: 819–846.CrossRefGoogle Scholar
  6. 6.
    Castillo C., Piernavieja AC and Recio-Pinto E. (1996) Anemone toxin II unmasks two conductance states in neuronal sodium channels. Brain Research 733: 231–242.PubMedCrossRefGoogle Scholar
  7. 7.
    Castillo C., Piernavieja AC and Recio-Pinto E. (1996) Interactions between anemone toxin II and veratridine on single neuronal sodium channels. Brain Research 733: 243–252.PubMedCrossRefGoogle Scholar
  8. 8.
    Castillo C, Villegas R and Recio-Pinto E (1992) Alkaloid-modified sodium channels from lobster walking leg nerves in planar lipid bilayers. J Gen Physiol 99: 879–930.CrossRefGoogle Scholar
  9. 9.
    Catterall WA (1998) Structure and function of neuronal Ca++ channels and their role in neurotransmitter release. Cell Calcium 24: 307–323.PubMedCrossRefGoogle Scholar
  10. 10.
    Cole KC (1949) Dynamic electrical characteristics of the squid axon membrane. Arch Sci Physiol 3: 253–258.Google Scholar
  11. 11.
    Dale HH (1914) The action of certain esters and ethers of choline, and their relation to muscarine. J Pharmac Exp Ther 6: 147–190.Google Scholar
  12. 12.
    Day TA and Maule AG (1999) Parasitic peptides! The structure and function of neuropeptides in parasitic worms. Peptides 20: 999–1019.PubMedCrossRefGoogle Scholar
  13. 13.
    DiPolo R and Beauge L (1999) Metabolic regulation of the Na/Ca exchange, the role of phosphorylation and dephosphorilation. Biochim Biophys Acta (review in Biomembranes) 1422: 57–71.PubMedCrossRefGoogle Scholar
  14. 14.
    Doolittle WF (1999) Phylogenetic classification and the universal tree. Science 284: 2124–2128.PubMedCrossRefGoogle Scholar
  15. 15.
    Eckert R and Brehm P (1979) Ionic mechanisms of excitation in Paramecium. Ann Rev Biophys Bioeng 8: 353–383.CrossRefGoogle Scholar
  16. 16.
    Elliot TR (1904) On the action of adrenaline. J Physiol, (London) 31: 20p.Google Scholar
  17. 17.
    Fox GE, Magrum IJ, Balchm WF, Wolfe RS and Woese CR (1977) Classification of methanogenic bacteria by 16S ribosomal RNA characterization. Proc Natl Acad Sci USA. 74: 4537–4541.PubMedCrossRefGoogle Scholar
  18. 18.
    Golgi C (1873) Sulla struttura délla sostanza grigia del cervello. Gaz Med Ital Lombardia 6: 244–246.Google Scholar
  19. 19.
    Hamill OP, Marty A, Neher E, Sakmann B and Sigworth FJ (1981) Improved patch-clamp techniques for high resolution current recording from cells and cell-free membrane patches. Plügers Arch 391: 85–100.CrossRefGoogle Scholar
  20. 20.
    Hartshorne RP and Catterall W.A (1984) The sodium channel from rat brain: purification and subunit composition. J Biol Chem 259: 1667–1675.PubMedGoogle Scholar
  21. 21.
    Hille B (1992) Ionic channels of excitable membranes. 2nd ed., Sinauer Associated Inc., MA.Google Scholar
  22. 22.
    Hodgkin AL, and Huxley AF (1952) Currents carried by sodium and potassium through the membrane of the giant axon of Loligo. J Physiol (London) 116: 449–472.Google Scholar
  23. 23.
    Hodgkin AL, Huxley AF and Katz B (1949) Ionic currents underlying activity in the giant axon of squid. Arch Sci Physiol. 3: 129–150.Google Scholar
  24. 24.
    Hodgkin AL and Katz B. (1949) The effect of sodium ions on the electrical activity of the giant axon of the squid. J Physiol (London) 108: 37–77.Google Scholar
  25. 25.
    Hodgkin AL Huxley AF and Katz B (1952) Measurements of current-voltage relations in the membrane of the giant axon of Loligo. J Physiol (London) 116: 424–448.Google Scholar
  26. 26.
    Hyman LH (1940) The invertebrates: Protozoa through Ctenophora Vol. 1 pp. 662–696 Mc Graw-Hill, New York.Google Scholar
  27. 27.
    Jegla T and Salkoff L (1994) Molecular evolution of K+ channels in primitive eukaryotes. Soc Gen Physiol Ser 49: 213–222.PubMedGoogle Scholar
  28. 28.
    Jegla T and Salkoff L (1995) A multi gene family of novel K+ channels from Paramecium tetraurelia. Receptor Channels 3: 51–60Google Scholar
  29. 29.
    Keynes RD (1951) The ionic movements during nervous activity. J Physiol (London) 114: 119–150.Google Scholar
  30. 30.
    Komai T (1963) A note on the phytogeny of the Ctenophore. In: The lower metazoa, comparative biology and phylogeny, EC Dougherty et al., Eds. University of California Press PP 181-188.Google Scholar
  31. 31.
    Koopowitz H (1982) Free-living platyhelminthes. In: Electrical conduction and behaviour in simple invertebrates. Shelton, G.A.B. (Ed.) Clarendon Press, Oxford, pp. 359–392.Google Scholar
  32. 32.
    Kuffler SW and Edwards C (1958) Mechanism of gamma-aminobutyric acid (GABA) action and its relation to synaptic inhibition. J Neurophysiol 21: 589–610.PubMedGoogle Scholar
  33. 33.
    Kuffler SW and Nicholls JG (1966) The physiology of neuroglial cells. Ergebn Physiol 57: 1–90.PubMedCrossRefGoogle Scholar
  34. 34.
    Lawn ID, Mackie GO and Siver G (1981) Conduction system in a sponge. Science 211: 1169–1171.PubMedCrossRefGoogle Scholar
  35. 35.
    Le Dain AC, Saint N, Kloda A, Ghazi A and Martinac B. (1998) Mechanosensitive ion channels of the archaeon Haloferax volcanii. J Biol Chem 273: 12116–121PubMedCrossRefGoogle Scholar
  36. 36.
    Levitan IB and Kaczmarek LK (1997) The neuron, cell, and molecular biology 2nd edition. Oxford University Press Inc. New York.Google Scholar
  37. 37.
    Leys SP, Mackie, GO and Meech RW (1999) Impulse conduction in a sponge. J Exp Biol 202: 1139–1150.PubMedGoogle Scholar
  38. 38.
    Loewi O (1921) Über humorale Übertragbarkeit der Hertznervenwirkung. Pflügers Arch Ges Physiol 189: 239–242.CrossRefGoogle Scholar
  39. 39.
    Mackie GO and Meech RW (1985) Separate sodium and calcium spikes in the same axon. Nature 313: 791–793.PubMedCrossRefGoogle Scholar
  40. 40.
    Meech RW and Mackie GO (1993) Ionic currents in giant motor axons of the jellyfish Aglantha digitale. J Neurophysiol 69: 884–893.PubMedGoogle Scholar
  41. 41.
    Meech RW and Mackie GO (1993) Potassium channel family in giant motor axons of Aglantha digitale. J Neurophysiol 69: 894–901.PubMedGoogle Scholar
  42. 42.
    Meech RW and Mackie GO (1995) Synaptic potentials and threshold currents underlying spike production in motor giant axons of Aglantha digitale. J Neurophysiol 74: 1662–1670.PubMedGoogle Scholar
  43. 43.
    Miguel V, Balbi D, Castillo C and Villegas R (1992). Reconstitution of sodium channels in large liposomes formed by the addition of acidic phospholipids and freeze-thaw sonication. J Memb Biol 129: 37–47.CrossRefGoogle Scholar
  44. 44.
    Moosler A, Rinehart KL and Grimmelikhuijzen CJ (1997) Isolation of three novel neuropeptides, the Cyanea-Rfamides IIII, from Scyphomedusae. Biochem Biophys Res Commun 236: 743–749.PubMedCrossRefGoogle Scholar
  45. 45.
    Moreno Davila H (1999) Molecular and functional diversity of voltage-gated calcium channels. Ann NY Acad Sci 30: 102–111.CrossRefGoogle Scholar
  46. 46.
    Mullins LJ (1960) An analysis of pore size in excitable membranes. J Gen Physiol 43 (5, Part 2) 105–117.PubMedCrossRefGoogle Scholar
  47. 47.
    Nikaido H (1994) Porins and specific diffusion channels in bacterial outer membranes. J Biol Chem 269: 3905–3908.PubMedGoogle Scholar
  48. 48.
    Noda M, Shimizu S, Tanabe T, Takai T, Kayano T, Ikeda T, Takahashi H, Nakayama H, Kanaoka Y, Minammo N, Kangawa K, Matsuo H, Raftery MA, Hirose T, Inayama S, Hayashida H, Miyata T and Numa S (1984). Primary structure of Electrophorus electricus sodium channel deduced from cDNA sequence. Nature 32: 121–127.CrossRefGoogle Scholar
  49. 49.
    Noda M, Ikeda T, Kayano T, Susuki H, Takeshima H, Kurasaki M, Takahashi H and Numa S (1986) Existance of distinct sodium channel messenger RNAs in rat brain. Nature 320: 188–192.PubMedCrossRefGoogle Scholar
  50. 50.
    Noda M, Ikeda T, Susuki H, Takeshima H, Takahashi T Kuno M and Numa S. (1986) Expression of functional sodium channels from cloned cDNA. Nature 322: 826–828.PubMedCrossRefGoogle Scholar
  51. 51.
    Oakley AJ, Martinac B and Wilce MC (1999) Structure and function of the bacterial mechanosensitive channel of large conductance. Protein Sci 8: 1915–1921.PubMedCrossRefGoogle Scholar
  52. 52.
    Pavans de Ceccatti M (1989) Les éponges, à l’aube des communications cellulaires. Pour la Science 142: 64–72.Google Scholar
  53. 53.
    Preston RR (1990) Genetic dissection of Ca2+-dependent ion channel function in Paramecium Bioessays 12: 273–281.PubMedCrossRefGoogle Scholar
  54. 54.
    Ramóny Cajal S (1894) La fine structure des centres nerveux. Croonian Lecture. Proc R Soc (London) 55: 444–468.CrossRefGoogle Scholar
  55. 55.
    Reuter M and Gustafsson MK (1995). The flatworm nervous system pattern and phylogeny. EXP 72: 25–59.Google Scholar
  56. 56.
    Rosenberg, RL, Tomiko S A and Agnew WA (1984a). Reconstitution of neurotoxin-modulated ion transport by the voltage-regulated sodium channel isolated from the electroplax of Electrophorus electricus. Proc Natl Acad Sci U.S.A. 81: 1239–1243.PubMedCrossRefGoogle Scholar
  57. 57.
    Rosenberg RL, Tomiko S A and Agnew WA (1984b). Single channel properties of the reconstituted voltage-regulated Na channels isolated from the electroplax of Electrophorus electricus. Proc Natl Acad Sci U.S.A. 81: 5594–5598.PubMedCrossRefGoogle Scholar
  58. 58.
    Shelton GAB. (Ed.) (1982) Electrical conduction and behaviour in simple invertebrates. Clarendon Press, Oxford, 567pp.Google Scholar
  59. 59.
    Schütze J, Krasko A, Custodio MR, Efremova SM, Müller IM and Müller WEG (1999) Evolutionary relationships of Metazoa within the eukaryotes based on molecular data from Porifera. Proc R Soc Lond B 266: 63–73.CrossRefGoogle Scholar
  60. 60.
    Sherrington CS (1897) The Central Nervous System. A Text Book of Physiology, Macmillan, London.Google Scholar
  61. 61.
    Solomon AK (1960) Red cell membrane structure and ion transport. J Gen Physiol 43 (5, Part 2) 1–15.PubMedCrossRefGoogle Scholar
  62. 62.
    Spafford JD, Spencer AN and Gallin WJ (1998) A putative voltage-gated sodium channel a subunit (PpSCNl) from the hydrozoan jellyfish, Polyorchis penicillatus: Structural comparisons and evolutionary considerations. Biochem Biophys Res Commun 244: 772–780.PubMedCrossRefGoogle Scholar
  63. 63.
    Stühmer W, Methfessel C, Sakmann B, Noda M, and Numa S. (1987) Patch clamp characterization of sodium channels expressed from rat brain cDNA. Eur Biophys J 14: 131–138.PubMedCrossRefGoogle Scholar
  64. 64.
    Sukharev S (1999) Mechanosensitive channels in bacteria as membrane tension reporters. FASEB J. 13 Suppl: S55–61.PubMedGoogle Scholar
  65. 65.
    Taylor B.L, Zhulin IB and Johnson MS (1999) Aerotaxis and other energy-sensing behavior in bacteria. Ann Rev Microbiol 53: 103–128.CrossRefGoogle Scholar
  66. 66.
    Terlau H and Stühmer W (1998) Structure and function of voltage-gated ion channels. Naturwissenschaften 85: 437–444.PubMedCrossRefGoogle Scholar
  67. 67.
    Treherne J.E (1981) Glial-neuron interactions. J Exp Biol 95: 1–20.Google Scholar
  68. 68.
    Ugarte G, Perez F and Latorre R (1998) How do calcium channels transport calcium ions? Biol Res. 31: 17–32.PubMedGoogle Scholar
  69. 69.
    Villegas GM and Villegas R (1968) Ultrastructural studies of the squid nerve fibers. J Gen Physiol 51: 44s–60s.PubMedCrossRefGoogle Scholar
  70. 70.
    Villegas GM and Villegas R (1984) Squid axon ultrastructure. In: Current Topics in Membranes and Transport, vol 22, The squid axon. P.F. Baker, ed. Academic Press, London, pp 3–37.Google Scholar
  71. 71.
    Villegas J (1995). Learning from the axon-Schwann cell relationships of the giant nerve fiber of the squid. In: Neuron-glia interrelations during phytogeny: II Plasticity and regeneration. A Vernadakis and B Roots (Eds). Humana Press Inc. Totowa N.J.Google Scholar
  72. 72.
    Villegas R and Villegas GM (1968) Characterization of the membranes in the giant nerve fiber of the squid. J Gen Physiol 43 (5, Part 2): 73–103.CrossRefGoogle Scholar
  73. 73.
    Villegas R and Villegas GM (1981) Nerve sodium channel incorporation in vesicles. Ann Rev Biophys Bioeng 10: 387–419.CrossRefGoogle Scholar
  74. 74.
    Villegas R, Bruzual IB and Villegas GM (1968) Equivalent pore radius of the axolemma of resting and stimulated squid axons. J Gen Physiol 51 (5, Part 2), 81–92.PubMedGoogle Scholar
  75. 75.
    Villegas R, Villegas GM, Barnola FV and Racker E (1977) Incorporation of the sodium channel of lobster nerve into artificial liposomes. Biochem Biophys Res Commun 79: 210–217.PubMedCrossRefGoogle Scholar
  76. 76.
    Villegas R, Villegas GM, Rodriguez JM and Sorais-Landáez F (1988) The sodium channel of excitable and non-excitable cells. Quart. Rev. Biophys 21: 99–128.CrossRefGoogle Scholar
  77. 77.
    Virchow R (1846) Über das granulirte Anschen der Wandungen der Gehirnventrikel. Allgem Z Psychiat 3: 424–450.Google Scholar
  78. 78.
    Wei AM, Covarrubias A, Butler K, Baker, Pak M, and Salkoff L (1990) K+ current diversity is produced by an extended gene family conserved in Drosophila and mouse. Science 248: 599–603.PubMedCrossRefGoogle Scholar
  79. 79.
    Westfall IA (1996) Ultrastructure of synapses in the first-evolved nervous systems J Neurocytol 12: 735–746.CrossRefGoogle Scholar
  80. 80.
    White GB, Pfahnl A, Haddock S, Lamers S, Greenberg RM and Anderson PA (1998) Structure of a putative sodium channel from the sea anemone Aiptasia pallida. Invert Neurosci 3: 317–326.CrossRefGoogle Scholar
  81. 81.
    Woese CR and Fox GE (1977) Phylogenetic structure of the prokaryotic domain: The primary kingdoms. Proc Natl Acad Sci USA. 74: 5088–5090.PubMedCrossRefGoogle Scholar
  82. 82.
    Woese CR, Kandier O and Wheelis ML (1990) Towards a natural system of organisms: Proposal for the domains Archaea, Bacteria and Eucarya. Proc Natl Acad Sci USA. 87: 4576–4579.PubMedCrossRefGoogle Scholar
  83. 83.
    Young JZ (1934) Structure of nerve fibers in sepia. J Physiol (London) 83: 27p–28p.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2000

Authors and Affiliations

  • Raimundo Villegas
    • 1
  • Cecilia Castillo
    • 1
  • Gloria M. Villegas
    • 1
  1. 1.Institute de Estudios AvanzadosIDEAApartadoVenezuela

Personalised recommendations