Skip to main content

The Origin of the Neuron: The First Neuron in the Phylogenetic Tree of Life

  • Conference paper
Astrobiology

Abstract

This contribution can be considered as an attempt to provide some kind of basic anchorage to look for neurons and nervous systems in possible new forms of life in the Universe. The peculiarities exhibited by the late protozoans and early groups of metazoans, led us to conclude taking into consideration the knowledge available at present, that the first neuron appeared in the Coelenterates, including Cnidarias and Ctenophores, and the first cerebral ganglia, as central component of a nervous system, appeared in the Platyhelminthes and Nematodes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agnew WS, Moore AC, Levinson SR and Raftery MA (1978) Purification of the tetrodotoxin-binding component associated with the voltage-sensitive sodium channel from Electrophorus electricus electroplax membranes. Proc Nat Acad Sci U.S.A. 75: 2606–2610.

    Article  CAS  Google Scholar 

  2. Armstrong CM and Hille B (1998) Voltage-gated ion channels and electrical excitability. Neuron 20: 371–380.

    Article  PubMed  CAS  Google Scholar 

  3. Armitage JP (1999) Bacterial tactic response. Adv Microb Physiol 41: 229–289.

    Article  PubMed  CAS  Google Scholar 

  4. Besnard M, Martinac B and Ghazi A. (1997) Voltage-dependent porin-like ion channels in the archaeon Haloferax volcanii. J Biol Chem 272: 992–995.

    Article  PubMed  CAS  Google Scholar 

  5. Bezanilla F and Stefani E (1994) Voltage-dependent gating of ionic channels. Ann Rev Biophys Biomol Struct. 23: 819–846.

    Article  CAS  Google Scholar 

  6. Castillo C., Piernavieja AC and Recio-Pinto E. (1996) Anemone toxin II unmasks two conductance states in neuronal sodium channels. Brain Research 733: 231–242.

    Article  PubMed  CAS  Google Scholar 

  7. Castillo C., Piernavieja AC and Recio-Pinto E. (1996) Interactions between anemone toxin II and veratridine on single neuronal sodium channels. Brain Research 733: 243–252.

    Article  PubMed  CAS  Google Scholar 

  8. Castillo C, Villegas R and Recio-Pinto E (1992) Alkaloid-modified sodium channels from lobster walking leg nerves in planar lipid bilayers. J Gen Physiol 99: 879–930.

    Article  Google Scholar 

  9. Catterall WA (1998) Structure and function of neuronal Ca++ channels and their role in neurotransmitter release. Cell Calcium 24: 307–323.

    Article  PubMed  CAS  Google Scholar 

  10. Cole KC (1949) Dynamic electrical characteristics of the squid axon membrane. Arch Sci Physiol 3: 253–258.

    CAS  Google Scholar 

  11. Dale HH (1914) The action of certain esters and ethers of choline, and their relation to muscarine. J Pharmac Exp Ther 6: 147–190.

    CAS  Google Scholar 

  12. Day TA and Maule AG (1999) Parasitic peptides! The structure and function of neuropeptides in parasitic worms. Peptides 20: 999–1019.

    Article  PubMed  CAS  Google Scholar 

  13. DiPolo R and Beauge L (1999) Metabolic regulation of the Na/Ca exchange, the role of phosphorylation and dephosphorilation. Biochim Biophys Acta (review in Biomembranes) 1422: 57–71.

    Article  PubMed  CAS  Google Scholar 

  14. Doolittle WF (1999) Phylogenetic classification and the universal tree. Science 284: 2124–2128.

    Article  PubMed  CAS  Google Scholar 

  15. Eckert R and Brehm P (1979) Ionic mechanisms of excitation in Paramecium. Ann Rev Biophys Bioeng 8: 353–383.

    Article  CAS  Google Scholar 

  16. Elliot TR (1904) On the action of adrenaline. J Physiol, (London) 31: 20p.

    Google Scholar 

  17. Fox GE, Magrum IJ, Balchm WF, Wolfe RS and Woese CR (1977) Classification of methanogenic bacteria by 16S ribosomal RNA characterization. Proc Natl Acad Sci USA. 74: 4537–4541.

    Article  PubMed  CAS  Google Scholar 

  18. Golgi C (1873) Sulla struttura délla sostanza grigia del cervello. Gaz Med Ital Lombardia 6: 244–246.

    Google Scholar 

  19. Hamill OP, Marty A, Neher E, Sakmann B and Sigworth FJ (1981) Improved patch-clamp techniques for high resolution current recording from cells and cell-free membrane patches. Plügers Arch 391: 85–100.

    Article  CAS  Google Scholar 

  20. Hartshorne RP and Catterall W.A (1984) The sodium channel from rat brain: purification and subunit composition. J Biol Chem 259: 1667–1675.

    PubMed  CAS  Google Scholar 

  21. Hille B (1992) Ionic channels of excitable membranes. 2nd ed., Sinauer Associated Inc., MA.

    Google Scholar 

  22. Hodgkin AL, and Huxley AF (1952) Currents carried by sodium and potassium through the membrane of the giant axon of Loligo. J Physiol (London) 116: 449–472.

    CAS  Google Scholar 

  23. Hodgkin AL, Huxley AF and Katz B (1949) Ionic currents underlying activity in the giant axon of squid. Arch Sci Physiol. 3: 129–150.

    CAS  Google Scholar 

  24. Hodgkin AL and Katz B. (1949) The effect of sodium ions on the electrical activity of the giant axon of the squid. J Physiol (London) 108: 37–77.

    CAS  Google Scholar 

  25. Hodgkin AL Huxley AF and Katz B (1952) Measurements of current-voltage relations in the membrane of the giant axon of Loligo. J Physiol (London) 116: 424–448.

    CAS  Google Scholar 

  26. Hyman LH (1940) The invertebrates: Protozoa through Ctenophora Vol. 1 pp. 662–696 Mc Graw-Hill, New York.

    Google Scholar 

  27. Jegla T and Salkoff L (1994) Molecular evolution of K+ channels in primitive eukaryotes. Soc Gen Physiol Ser 49: 213–222.

    PubMed  CAS  Google Scholar 

  28. Jegla T and Salkoff L (1995) A multi gene family of novel K+ channels from Paramecium tetraurelia. Receptor Channels 3: 51–60

    CAS  Google Scholar 

  29. Keynes RD (1951) The ionic movements during nervous activity. J Physiol (London) 114: 119–150.

    CAS  Google Scholar 

  30. Komai T (1963) A note on the phytogeny of the Ctenophore. In: The lower metazoa, comparative biology and phylogeny, EC Dougherty et al., Eds. University of California Press PP 181-188.

    Google Scholar 

  31. Koopowitz H (1982) Free-living platyhelminthes. In: Electrical conduction and behaviour in simple invertebrates. Shelton, G.A.B. (Ed.) Clarendon Press, Oxford, pp. 359–392.

    Google Scholar 

  32. Kuffler SW and Edwards C (1958) Mechanism of gamma-aminobutyric acid (GABA) action and its relation to synaptic inhibition. J Neurophysiol 21: 589–610.

    PubMed  CAS  Google Scholar 

  33. Kuffler SW and Nicholls JG (1966) The physiology of neuroglial cells. Ergebn Physiol 57: 1–90.

    Article  PubMed  CAS  Google Scholar 

  34. Lawn ID, Mackie GO and Siver G (1981) Conduction system in a sponge. Science 211: 1169–1171.

    Article  PubMed  CAS  Google Scholar 

  35. Le Dain AC, Saint N, Kloda A, Ghazi A and Martinac B. (1998) Mechanosensitive ion channels of the archaeon Haloferax volcanii. J Biol Chem 273: 12116–121

    Article  PubMed  Google Scholar 

  36. Levitan IB and Kaczmarek LK (1997) The neuron, cell, and molecular biology 2nd edition. Oxford University Press Inc. New York.

    Google Scholar 

  37. Leys SP, Mackie, GO and Meech RW (1999) Impulse conduction in a sponge. J Exp Biol 202: 1139–1150.

    PubMed  Google Scholar 

  38. Loewi O (1921) Über humorale Übertragbarkeit der Hertznervenwirkung. Pflügers Arch Ges Physiol 189: 239–242.

    Article  Google Scholar 

  39. Mackie GO and Meech RW (1985) Separate sodium and calcium spikes in the same axon. Nature 313: 791–793.

    Article  PubMed  CAS  Google Scholar 

  40. Meech RW and Mackie GO (1993) Ionic currents in giant motor axons of the jellyfish Aglantha digitale. J Neurophysiol 69: 884–893.

    PubMed  CAS  Google Scholar 

  41. Meech RW and Mackie GO (1993) Potassium channel family in giant motor axons of Aglantha digitale. J Neurophysiol 69: 894–901.

    PubMed  CAS  Google Scholar 

  42. Meech RW and Mackie GO (1995) Synaptic potentials and threshold currents underlying spike production in motor giant axons of Aglantha digitale. J Neurophysiol 74: 1662–1670.

    PubMed  CAS  Google Scholar 

  43. Miguel V, Balbi D, Castillo C and Villegas R (1992). Reconstitution of sodium channels in large liposomes formed by the addition of acidic phospholipids and freeze-thaw sonication. J Memb Biol 129: 37–47.

    Article  CAS  Google Scholar 

  44. Moosler A, Rinehart KL and Grimmelikhuijzen CJ (1997) Isolation of three novel neuropeptides, the Cyanea-Rfamides IIII, from Scyphomedusae. Biochem Biophys Res Commun 236: 743–749.

    Article  PubMed  CAS  Google Scholar 

  45. Moreno Davila H (1999) Molecular and functional diversity of voltage-gated calcium channels. Ann NY Acad Sci 30: 102–111.

    Article  Google Scholar 

  46. Mullins LJ (1960) An analysis of pore size in excitable membranes. J Gen Physiol 43 (5, Part 2) 105–117.

    Article  PubMed  CAS  Google Scholar 

  47. Nikaido H (1994) Porins and specific diffusion channels in bacterial outer membranes. J Biol Chem 269: 3905–3908.

    PubMed  CAS  Google Scholar 

  48. Noda M, Shimizu S, Tanabe T, Takai T, Kayano T, Ikeda T, Takahashi H, Nakayama H, Kanaoka Y, Minammo N, Kangawa K, Matsuo H, Raftery MA, Hirose T, Inayama S, Hayashida H, Miyata T and Numa S (1984). Primary structure of Electrophorus electricus sodium channel deduced from cDNA sequence. Nature 32: 121–127.

    Article  Google Scholar 

  49. Noda M, Ikeda T, Kayano T, Susuki H, Takeshima H, Kurasaki M, Takahashi H and Numa S (1986) Existance of distinct sodium channel messenger RNAs in rat brain. Nature 320: 188–192.

    Article  PubMed  CAS  Google Scholar 

  50. Noda M, Ikeda T, Susuki H, Takeshima H, Takahashi T Kuno M and Numa S. (1986) Expression of functional sodium channels from cloned cDNA. Nature 322: 826–828.

    Article  PubMed  CAS  Google Scholar 

  51. Oakley AJ, Martinac B and Wilce MC (1999) Structure and function of the bacterial mechanosensitive channel of large conductance. Protein Sci 8: 1915–1921.

    Article  PubMed  CAS  Google Scholar 

  52. Pavans de Ceccatti M (1989) Les éponges, à l’aube des communications cellulaires. Pour la Science 142: 64–72.

    Google Scholar 

  53. Preston RR (1990) Genetic dissection of Ca2+-dependent ion channel function in Paramecium Bioessays 12: 273–281.

    Article  PubMed  CAS  Google Scholar 

  54. Ramóny Cajal S (1894) La fine structure des centres nerveux. Croonian Lecture. Proc R Soc (London) 55: 444–468.

    Article  Google Scholar 

  55. Reuter M and Gustafsson MK (1995). The flatworm nervous system pattern and phylogeny. EXP 72: 25–59.

    CAS  Google Scholar 

  56. Rosenberg, RL, Tomiko S A and Agnew WA (1984a). Reconstitution of neurotoxin-modulated ion transport by the voltage-regulated sodium channel isolated from the electroplax of Electrophorus electricus. Proc Natl Acad Sci U.S.A. 81: 1239–1243.

    Article  PubMed  CAS  Google Scholar 

  57. Rosenberg RL, Tomiko S A and Agnew WA (1984b). Single channel properties of the reconstituted voltage-regulated Na channels isolated from the electroplax of Electrophorus electricus. Proc Natl Acad Sci U.S.A. 81: 5594–5598.

    Article  PubMed  CAS  Google Scholar 

  58. Shelton GAB. (Ed.) (1982) Electrical conduction and behaviour in simple invertebrates. Clarendon Press, Oxford, 567pp.

    Google Scholar 

  59. Schütze J, Krasko A, Custodio MR, Efremova SM, Müller IM and Müller WEG (1999) Evolutionary relationships of Metazoa within the eukaryotes based on molecular data from Porifera. Proc R Soc Lond B 266: 63–73.

    Article  Google Scholar 

  60. Sherrington CS (1897) The Central Nervous System. A Text Book of Physiology, Macmillan, London.

    Google Scholar 

  61. Solomon AK (1960) Red cell membrane structure and ion transport. J Gen Physiol 43 (5, Part 2) 1–15.

    Article  PubMed  CAS  Google Scholar 

  62. Spafford JD, Spencer AN and Gallin WJ (1998) A putative voltage-gated sodium channel a subunit (PpSCNl) from the hydrozoan jellyfish, Polyorchis penicillatus: Structural comparisons and evolutionary considerations. Biochem Biophys Res Commun 244: 772–780.

    Article  PubMed  CAS  Google Scholar 

  63. Stühmer W, Methfessel C, Sakmann B, Noda M, and Numa S. (1987) Patch clamp characterization of sodium channels expressed from rat brain cDNA. Eur Biophys J 14: 131–138.

    Article  PubMed  Google Scholar 

  64. Sukharev S (1999) Mechanosensitive channels in bacteria as membrane tension reporters. FASEB J. 13 Suppl: S55–61.

    PubMed  CAS  Google Scholar 

  65. Taylor B.L, Zhulin IB and Johnson MS (1999) Aerotaxis and other energy-sensing behavior in bacteria. Ann Rev Microbiol 53: 103–128.

    Article  CAS  Google Scholar 

  66. Terlau H and Stühmer W (1998) Structure and function of voltage-gated ion channels. Naturwissenschaften 85: 437–444.

    Article  PubMed  CAS  Google Scholar 

  67. Treherne J.E (1981) Glial-neuron interactions. J Exp Biol 95: 1–20.

    Google Scholar 

  68. Ugarte G, Perez F and Latorre R (1998) How do calcium channels transport calcium ions? Biol Res. 31: 17–32.

    PubMed  CAS  Google Scholar 

  69. Villegas GM and Villegas R (1968) Ultrastructural studies of the squid nerve fibers. J Gen Physiol 51: 44s–60s.

    Article  PubMed  Google Scholar 

  70. Villegas GM and Villegas R (1984) Squid axon ultrastructure. In: Current Topics in Membranes and Transport, vol 22, The squid axon. P.F. Baker, ed. Academic Press, London, pp 3–37.

    Google Scholar 

  71. Villegas J (1995). Learning from the axon-Schwann cell relationships of the giant nerve fiber of the squid. In: Neuron-glia interrelations during phytogeny: II Plasticity and regeneration. A Vernadakis and B Roots (Eds). Humana Press Inc. Totowa N.J.

    Google Scholar 

  72. Villegas R and Villegas GM (1968) Characterization of the membranes in the giant nerve fiber of the squid. J Gen Physiol 43 (5, Part 2): 73–103.

    Article  Google Scholar 

  73. Villegas R and Villegas GM (1981) Nerve sodium channel incorporation in vesicles. Ann Rev Biophys Bioeng 10: 387–419.

    Article  CAS  Google Scholar 

  74. Villegas R, Bruzual IB and Villegas GM (1968) Equivalent pore radius of the axolemma of resting and stimulated squid axons. J Gen Physiol 51 (5, Part 2), 81–92.

    PubMed  CAS  Google Scholar 

  75. Villegas R, Villegas GM, Barnola FV and Racker E (1977) Incorporation of the sodium channel of lobster nerve into artificial liposomes. Biochem Biophys Res Commun 79: 210–217.

    Article  PubMed  CAS  Google Scholar 

  76. Villegas R, Villegas GM, Rodriguez JM and Sorais-Landáez F (1988) The sodium channel of excitable and non-excitable cells. Quart. Rev. Biophys 21: 99–128.

    Article  CAS  Google Scholar 

  77. Virchow R (1846) Über das granulirte Anschen der Wandungen der Gehirnventrikel. Allgem Z Psychiat 3: 424–450.

    Google Scholar 

  78. Wei AM, Covarrubias A, Butler K, Baker, Pak M, and Salkoff L (1990) K+ current diversity is produced by an extended gene family conserved in Drosophila and mouse. Science 248: 599–603.

    Article  PubMed  CAS  Google Scholar 

  79. Westfall IA (1996) Ultrastructure of synapses in the first-evolved nervous systems J Neurocytol 12: 735–746.

    Article  Google Scholar 

  80. White GB, Pfahnl A, Haddock S, Lamers S, Greenberg RM and Anderson PA (1998) Structure of a putative sodium channel from the sea anemone Aiptasia pallida. Invert Neurosci 3: 317–326.

    Article  CAS  Google Scholar 

  81. Woese CR and Fox GE (1977) Phylogenetic structure of the prokaryotic domain: The primary kingdoms. Proc Natl Acad Sci USA. 74: 5088–5090.

    Article  PubMed  CAS  Google Scholar 

  82. Woese CR, Kandier O and Wheelis ML (1990) Towards a natural system of organisms: Proposal for the domains Archaea, Bacteria and Eucarya. Proc Natl Acad Sci USA. 87: 4576–4579.

    Article  PubMed  CAS  Google Scholar 

  83. Young JZ (1934) Structure of nerve fibers in sepia. J Physiol (London) 83: 27p–28p.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Villegas, R., Castillo, C., Villegas, G.M. (2000). The Origin of the Neuron: The First Neuron in the Phylogenetic Tree of Life. In: Chela-Flores, J., Lemarchand, G.A., Oró, J. (eds) Astrobiology. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4313-4_15

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4313-4_15

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-5865-0

  • Online ISBN: 978-94-011-4313-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics