Skip to main content

Gas-Phase Reaction Mechanisms for Nitrogen Oxide Formation and Removal in Combustion

  • Chapter
Pollutants from Combustion

Part of the book series: NATO Science Series ((ASIC,volume 547))

Abstract

The principal nitrogen oxides emitted from combustion devices are nitric oxide (NO), nitrogen dioxide (NO2), collectively referred to as NOx, and nitrous oxide (N2O). Because of detrimental effects of nitrogen oxides on the environment and on health, nitrogen oxide emissions from combustion sources are regulated in most industrialized countries. A variety of techniques for reducing nitrogen oxide emissions have been developed. The concepts underlying many of these emissions reduction techniques can be understood in terms of the reaction mechanisms for formation and removal of nitrogen oxides in combustion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Dean, A. M. and Bozzelli, J. W. (1999) Combustion chemistry of nitrogen, in W. C. Gardiner (ed.), Combustion Chemistry II, Springer-Verlag, Heidelberg (in press).

    Google Scholar 

  2. Davidson, D. F. and Hanson, R. K. (1990) High temperature reaction rate coefficients derived from N-atom ARAS measurements and excimer photolysis of NO, Int. J. Chem. Kinet. 22, 843–861.

    Article  CAS  Google Scholar 

  3. Thielen, K. and Roth, P. (1984) Resonance absorption measurements of N and O atoms in high temperature NO dissociation and formation kinetics, 20 th Symp. (Int.) on Combust., The Combustion Institute, Pittsburgh, 685–693.

    Google Scholar 

  4. Hanson, R. K. and Salimian, S. (1984) Survey of rate constants in the N/H/O system, in W. C. Gardiner (ed.), Combustion Chemistry, Springer-Verlag, New York, 361–421.

    Chapter  Google Scholar 

  5. Michael, J. V. and Lim, K. P. (1992) Rate constants for the N2O reaction system: thermal decomposition of N2O: N + NO = N2 + O; and implications for O + N2 = NO + N, J Chem. Phys. 96, 3228–3234.

    Article  Google Scholar 

  6. Zabielski, M. F. and Seery, D. J. (1989) The direct measurement of the rate of nitric oxide formation in a high temperature, oxygen enriched methane flame, ASME Fossil Fuels Combustion Symposium 25, 91–94.

    Google Scholar 

  7. Koshi, M. Yoshimura, M. Fujuda, K., Matsui, H., Saito, K, Watanabe, M. Imamura, A. and Chen, C. (1990) Reactions of N(4S) atoms with NO and H2, J. Chem. Phys. 93, 8703–8708.

    Article  CAS  Google Scholar 

  8. Fenimore, C. P. (1970) Formation of nitric oxide in premixed hydrocarbon flames, 13 th Symp. (Int.) on Combust., The Combustion Institute, Pittsburgh, 373–380.

    Google Scholar 

  9. Bozzelli, J. W. and Dean, A. M. (1995) O + NNH: A possible new route for NOx production in flames, Int. J. Chem. Kinet. 27, 1097–1110.

    Article  CAS  Google Scholar 

  10. Harrington, J. E., Smith, G. P., Berg, P. A., Noble, A. B., Jeffries, J. B. and Crosley, D. R. (1996) Evidence for a new NO production mechanism in flames, 26 th Symp. (Int.) on Combust., The Combustion Institute, Pittsburgh, 2133–2138.

    Google Scholar 

  11. Grcar, J. F., Kee, R. J., Smooke, M. D. and Miller, J. A. (1986) A hybrid Newton/time-integration procedure for the solution of steady, laminar, one-dimensional, premixed flames, 21 st Symp. (Int.) on Combust., The Combustion Institute, Pittsburgh, 1773–1782.

    Google Scholar 

  12. Rabitz, H., Kramer, M. and Dacol, G. (1983) Sensitivity analysis in chemical kinetics, Ann. Rev. Phys. Chem. 34, 419.

    Article  CAS  Google Scholar 

  13. Luque, J., Smith, G. P. and Crosley, D. R. (1996) Quantitative CH determinations in low-pressure flames, 26 th Symp. (Int.) on Combust., The Combustion Institute, Pittsburgh, 959–966.

    Google Scholar 

  14. Miller, J. A. and Walch, S. P. (1997) Prompt NO: Theoretical prediction of the high-temperature rate coefficient for CH + N2 HCN + N, Int. J. Chem. Kinet. 29, 253–259.

    Article  CAS  Google Scholar 

  15. Dean, A. J., Hanson, R. K. and Bowman, C. T. (1990) High-temperature shock tube study of reactions of CH and C-atoms with N2, 23 rd Symp. (Int.) on Combust., The Combustion Institute, Pittsburgh, 259–265.

    Google Scholar 

  16. Lindackers, D., Burmeister, M. and Roth, P. (1990) Perturbations studies of high temperature C and CH reactions with N2 and NO, 23 rd Symp. (Int.) on Combust., The Combustion Institute, Pittsburgh, 251–257.

    Google Scholar 

  17. Morley, C. (1976) The formation and destruction of hydrogen cyanide from atmospheric and fuel nitrogen in rich atmospheric-pressure flames, Combust. Flame 27, 189–204.

    Article  CAS  Google Scholar 

  18. Blauwens, J., Smets, B. and Peeters, J. (1977) Mechanism of “prompt” NO formation in hydrocarbon flames, 16 th Symp. (Int.) on Combust, The Combustion Institute, Pittsburgh, 1055–1064.

    Google Scholar 

  19. Miller, J. A. and Bowman, C. T. (1989) Mechanism and modeling of nitrogen chemistry in combustion, Prog. Energy Combust. Sei. 4, 287–338.

    Article  Google Scholar 

  20. Castleton, K. H. (1994) private communication.

    Google Scholar 

  21. Matsui, Y. and Yuuki, A. (1985) Radical concentrations and prompt NO formation in hydrocarbon-air premixed flames, Japan J. Appl. Phys. 24, 598–603.

    Article  CAS  Google Scholar 

  22. Malte, P. C. and Pratt, D. T. (1974) The role of energy-releasing kinetics in NOx formation: fuel lean, jet-stirred CO-air combustion, Combust. Sci. Technol. 9, 221–231.

    Article  CAS  Google Scholar 

  23. Wolfrum, J. (1972) Bildung von Stickstoffoxiden ber der Verbrennung, Chem. Ing. Tech. 44, 656–659.

    Article  CAS  Google Scholar 

  24. Martin, G. B. and Berkau, E. E. (1971) An investigation of the conversion of various fuel nitrogen compounds to nitrogen oxides in oil combustion, 70th National AIChE Meeting.

    Google Scholar 

  25. Sarofim, A. F. and Flagan, R. C. (1976) NO control in stationary combustion sources, Prog. Energy Combust. Sci. 2, 1–25.

    Article  CAS  Google Scholar 

  26. Axworthy, A. E., Dayan, V. H. and Martin, G. B. (1978) Reactions of fuel-nitrogen compounds under conditions of inert pyrolysis, Fuel 57, 29–35.

    Article  CAS  Google Scholar 

  27. Laskin, A. and Lifshitz, A. (1997) Isomerization and decomposition of indole. Experimental results and kinetic modeling, J. Phys. Chem. A. 101, 7787–7801.

    Article  CAS  Google Scholar 

  28. Houser, T. J., McCarville, M. E. and Biftu, T. (1980), Kinetics of the thermal decomposition of pyridine in a flow reactor, Int. J. Chem. Kinet. 12, 555–568.

    Article  CAS  Google Scholar 

  29. NIST Chemical Kinetics Database-Version 6.01 ( 1994).

    Google Scholar 

  30. Merryman, E. L. and Levy, A. (1975) Nitrogen oxide formation in flames: The role of NO2 and fuel nitrogen, 15 th Symp. (Int.) on Combust., The Combustion Institute, Pittsburgh, 1073–1083.

    Google Scholar 

  31. Drake, M. C, Correa, S. M., Pitz, R. W., Shyy, W. and Fenimore, C. P. (1987) Superequilibrium and thermal nitric oxide formation in turbulent diffusion flames, Combust. Flame 69, 347–365.

    Article  CAS  Google Scholar 

  32. Bowman, C. T. (1992) Control of combustion-generated nitrogen oxide emissions: technology driven by regulation, 24 th Symp. (Int.) on Combust., The Combustion Institute, Pittsburgh, 859–878.

    Google Scholar 

  33. Nishioka, N., Nakagawa, S., Ishikawa, Y. and Takeno, T. (1994) NO emission characteristics of methane-air double flame, Combust. Flame 98, 127–138.

    Article  CAS  Google Scholar 

  34. Hewson, J. C. and Bollig, M. (1996) Reduced mechanisms for NOx emissions from hydrocarbon diffusion flames, 26 th Symp. (Int.) on Combust., The Combustion Institute, Pittsburgh, 2171–2179.

    Google Scholar 

  35. Nichol, D. G., Steele, R. C, Marinov, N. M. and Malte, P. C. (1995) The importance of the nitrous oxide pathway to NOx in lean-premixed combustion, Trans. ASME J. Eng. for Gas Turbines and Power 117, 100–111.

    Article  Google Scholar 

  36. Miller, J. A., Durant, J. L. and Glarborg, P. (1998) Some chemical kinetics issues in reburning: the branching ratio of the HCCO+NO reaction, 27 th Symp. (Int.) on Combust., The Combustion Institute, Pittsburgh, 235–243.

    Google Scholar 

  37. Miller, J. A., Melius, C. F. and Glarborg, P. (1997) The CH3 + NO rate coefficient at high temperatures: theoretical analysis and comparison with experiment, Int. J. Chem. Kinet. 29, 223–228.

    Google Scholar 

  38. Marro, M. A., Pivovarov, M. A. and Miller, J. H. (1997) Strategy for simplification of nitrogen oxide chemistry in a laminar methane/air diffusion flamelet, Combust. Flame 111, 208–221.

    Article  CAS  Google Scholar 

  39. Lyon, R. K. (1987) Thermal DeNOx, Environ. Sei. Technol. 21, 231–236.

    Article  CAS  Google Scholar 

  40. Hulgaard, T. and Dam-Johansen, K. (1993) Homogeneous nitrous oxide formation and destruction under combustion conditions, A.I.Ch.E. J. 39, 1342–1354.

    Article  CAS  Google Scholar 

  41. Bowman, C. T. (1997) Mechanisms and modeling of gas-phase aftertreatment methods for NO removal from combustion products, in F. L. Dryer and R. F. Sawyer (eds.), Physical and Chemical Aspects of Combustion Gordon and Breach, Amsterdam, 29–68.

    Google Scholar 

  42. Song, S. H., Votsmeier, M., Hanson, R. K., Bowman, C. T. and Golden, D. M. (1999) Shock tube study of the reaction NH2 + NO → products using frequency modulation detection of NH2: product branching ratio and overall rate coefficient, Paper 163, Joint Meeting of the United States Sections: The Combustion Institute, Washington DC, March 1999.

    Google Scholar 

  43. Bulatov, V. P., Ioffe, A. A., Lozovsky, V. A. and Sarkisov, O. M. (1989) On the reaction of the NH2 radical with NO at 295-620K, Chem. Phys. Letters 161, 141–146.

    Article  CAS  Google Scholar 

  44. Atakan, B., Jacobs, A., Wahl, M., Weller, R. and Wolfrum, J. (1989) Kinetic measurements and product branching ratio for the reaction NH2 + NO at 294-1027K, Chem. Phys. Letters 155, 609–613.

    Article  CAS  Google Scholar 

  45. Stephens, J. W., Morter, C. L., Farhat, S. K., Glass, G. P. and Curl, R. F. (1993) Branching ratio of the reaction NH2 + NO at elevated temperatures, J. Phys. Chem. 97, 8944–8951.

    Article  CAS  Google Scholar 

  46. Vandooren, J., Bian, J., van Tiggelen, P. J. (1994) Comparison of experimental and calculated structures of an ammonia-nitric oxide flame. Importance of the NH2 + NO reaction, Combust. Flame 98, 402–410.

    Article  CAS  Google Scholar 

  47. Silver, J. A. and Kolb, C. E. (1982), Kinetic measurements for the reaction of NH2 + NO over the temperature range 294-1215K, J. Phys. Chem. 86, 3240–3246.

    Article  CAS  Google Scholar 

  48. Roose, T. R., Hanson, R. K. and Kruger, C. H. ( 1981 ) A shock tube study of the decomposition of NO in the presence of NH3, 18 th Symp. (Int.) on Combust., The Combustion Institute, Pittsburgh, 853–862.

    Google Scholar 

  49. Deppe, J. Friedrichs, G., Römming, H.-J. and Wagner, H. Gg. (1999) A kinetic study of the reaction NH2 with NO in the temperature range from 1400 to 2800K, Phys. Chem. Chem. Phys. 1,427–435.

    Article  CAS  Google Scholar 

  50. Miller, J. A. and Glarborg, P. (1996) Modeling the formation of N2O and NO2 in the thermal de-NOx process, in J. Wolfrum, H.-R. Volpp, R. Rannacher and J. Warnatz (eds.) Gas-Phase Chemical Reaction Systems: Experiments and Models 100 Years after Max Bodenstein., Springer, Berlin, 318–333.

    Google Scholar 

  51. Park, J. and Lin, M. C. (1996) Direct determination of product branching for the NH2 + NO reaction at temperatures between 302 and 1060K, J. Phys. Chem. 100, 3317–3319.

    Article  CAS  Google Scholar 

  52. Glarborg, P., Kristensen, P. G., Dam-Johansen, K. and Miller, J. A. (1997), Branching fraction of the NH2 + NO reaction between 1210 and 1370K, J. Phys. Chem. A 101, 3741–3745.

    Article  CAS  Google Scholar 

  53. Votsmeier, M., Song, S., Hanson, R. K and Bowman, C. T. (1999) A shock tube study of the product branching ratio for the reaction NH2 + NO using frequency-modulation detection of NH2, J. Phys. Chem. A 103, 1566–1571.

    Article  CAS  Google Scholar 

  54. Halbgewachs, M. J., Diau, M. J., Mebel, A. M., Un, M. C. and Melius, C. F. (1996) Thermal reduction of NO by NH3: kinetic modeling of the NH2 + NO product branching ratio, 26 th Symp. (Int.) on Combust., The Combustion Institute, Pittsburgh, 2109–2115.

    Google Scholar 

  55. Park, J. and Lin, M. C. (1997) Laser-initiated NO reduction by NH3: total rate constant and product branching ratio measurements for the NH2 + NO reaction, J. Phys. Chenu A 101, 5–13.

    Article  CAS  Google Scholar 

  56. Kimball-Linne, M. A. and Hanson, R. K. (1986) Combustion-driven flow reactor studies of thermal DeNOx reaction kinetics, Combust. Flame 64,337–351.

    Article  CAS  Google Scholar 

  57. Lyon, R. K. and Hardy, J. E. (1986) Discovery and development of the thermal DeNOx process, Ind. Eng. Chem. Fundam. 25, 19–24.

    Article  CAS  Google Scholar 

  58. Perry, R. A. and Siebers, D. L. (1986) Rapid reduction of nitrogen oxides in exhaust gas streams, Nature 324,657–658.

    Article  CAS  Google Scholar 

  59. Caton, J. A. and Siebers, D. L. (1988) Comparison of nitric oxide removal by cyanuric acid and by ammonia, Combust. Sei. Technol. 65, 277–293

    Article  Google Scholar 

  60. Wooldridge, M. S., Hanson, R. K. and Bowman, C. T. (1996) A shock tube study of CO + OH → CO2 + H and HNCO + OH → products via simultaneous laser absorption measurements of OH and CO2, Int. J. Chem. Kinet.28 361–372.

    Article  CAS  Google Scholar 

  61. Drake, M. C. and Blint, R. J. (1991) Calculations of NOx formation pathways in propagating laminar, high-pressure premixed CH4/air flames, Combust. Sei. Technol. 75, 261–285.

    Article  CAS  Google Scholar 

  62. Warnatz, J., Maas, U., and Dibble, R. W. (1996) Combustion Springer-Verlag, Berlin, 219–236.

    Book  Google Scholar 

  63. Bozzelli, J. W., M. H. Ul Karim and Dean, A. M. (1993) Reactions of CH2 and CH with N2 and CH with NO, in T. Takeno (ed.), Turbulence and Molecular Processes in Combustion, 101–116, Elsevier Science.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Bowman, C.T. (2000). Gas-Phase Reaction Mechanisms for Nitrogen Oxide Formation and Removal in Combustion. In: Vovelle, C. (eds) Pollutants from Combustion. NATO Science Series, vol 547. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4249-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4249-6_7

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-6135-0

  • Online ISBN: 978-94-011-4249-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics