Skip to main content

Recent Laboratory Photochemical Studies and Their Relationship to the Photochemical Formation of Cometary Radicals

  • Chapter
Comets in the Post-Halley Era

Part of the book series: Astrophysics and Space Science Library ((ASSL,volume 167))

Abstract

Experimental laboratory techniques used in studying the photochemistry of stable and unstable molecules are discussed. The laboratory evidence for the photochemical formation of C2 from C2H, C3 from C3H2, and NH from NH2 is presented. Other recent results obtained in laboratory studies of H2O, H2S, NH3, and HCN are reported.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Andresen, P., and Schinke, R. (1987). ‘Dissociation of Water in the First Absorption Band: A Model System for Direct Photodissociation’, in Molecular Photodissociation Dynamics: Advances in Gas-Phase Photochemistry and Kinetics, M.N.R. Ashfold and J.E. Baggott (eds.), Royal Society of Chemistry, London, pp. 61–113.

    Google Scholar 

  • Ashfold, M.N.R., and J.E. Baggott, eds. (1987). Molecular Photodissociation Dynamics: Advances in Gas-Phase Photochemistry and Kinetics, Royal Society of Chemistry, London.

    Google Scholar 

  • Ashfold, M.N.R., M.T. Macpherson, and J.P. Simons (1979). ‘Photochemistry and Spectroscopy of Simple Polyatomic-Molecules in the Vacuum Ultraviolet’, Topics in Current Chemistry, 86, 1–90.

    Article  Google Scholar 

  • Becker, K.H., D. Haaks, and M. Schurgers (1971). ‘Fluorescence by the Vacuum-UV Photolysis of Acetylene’, Z. Naturforsch., A 26, 1770.

    ADS  Google Scholar 

  • Biesner, J., L. Schnieder, J. Schmeer, G. Ahlers, X. Xie, K.H. Welge, M.N.R. Ashfold, and R.N. Dixon (1988). ‘State Selective Photodissociation Dynamics of A State Ammonia. I’, J. Chem. Phys., 88, 3607–3616.

    Article  ADS  Google Scholar 

  • Biesner, J., L. Schnieder, G. Ahlers, X. Xie, K.H. Welge, M.N.R. Ashfold, and R.N. Dixon (1989). ‘State Selective Photodissociation Dynamics of A State Ammonia. II’, to be submitted to J. Chem. Phys.

    Google Scholar 

  • Bockelee-Morvan, D., and J. Crovisier (1985). ‘Possible Parents for the Cometary CN Radical: Photochemistry and Excitation Conditions’, Astron. Astrophys., 151, 90–100.

    ADS  Google Scholar 

  • Buelow, S., M. Noble, G. Radhakrishnan, H. Reisler, C. Wittiz, and G. Hancock (1986). ‘The Role of Initial Conditions in Elementary Gas-Phase Processes Involving Intermediate “Complexes”’, J. Phys.Chem., 90, 1015–1027.

    Article  Google Scholar 

  • Cochran, A.L. (1985). ‘C2 Photolytic Processes in Cometary Comae’, Astrophys. J., 289, 388–391.

    Article  ADS  Google Scholar 

  • Continetti, R.E. (1989). Ph.D. Thesis, University of California.

    Google Scholar 

  • Craig, B.B., W.L. Faust, and L.S. Goldberg (1982). ‘UV Short Pulse Fragmentation of Isotopically Labeled Acetylene: Studies of Emission With Subnanosecond Resolutions’, J. Chem. Phys., 76, 5014–5021.

    Article  ADS  Google Scholar 

  • Crovisier, J. (1989). ‘The Photodissociation of Water in Cometary Atmospheres’, Astron. Astrophys., 213, 459–464.

    ADS  Google Scholar 

  • Delsemme, A.H. (1975). ‘The Volatile Fraction of the Cometary Nucleus’, Icarus, 24, 95.

    Article  ADS  Google Scholar 

  • Fletcher, T.R., and S.R. Leone (1989). ‘Photodissociation of C2H2 at 193 nm: Vibrational Distributions of the CCH Radical and the Rotational State Distribution of the A(101) State by Time-Resolved Fourier Transform Emission’, J. Chem. Phys., 90, 871–879.

    Article  ADS  Google Scholar 

  • Gredel, R., E.F. van Dishoeck, and J.H. Black (1989). ‘Fluorescent Vibration-Rotation Excitation of Cometary C2’, Astrophys. J., 338, 1047–1070.

    Article  ADS  Google Scholar 

  • Huebner, W.F., and C.W. Carpenter (1979). ‘Solar Photo Rate Coefficients’, Rep. LA-8085-MS, Los Alamos Sci. Lab., Los Alamos, New Mexico.

    Google Scholar 

  • Huebner, W.H., L.E. Snyder, and D. Buhl (1974). ‘HCN Radio Emission From Comet Kohoutek (19737)’, Icarus, 23, 580–584.

    Article  ADS  Google Scholar 

  • Jackson, W.M. (1973). ‘Laser Induced Fluorescence of CN Radicals’, J. Chem. Phys., 59, 960–961.

    Article  ADS  Google Scholar 

  • Jackson, W.M. (1976). ‘The Photochemical Formation of Cometary Radicals’, J. Photochem., 5, 107–118.

    Article  Google Scholar 

  • Jackson, W.M. (1982). ‘Laboratory Studies of Photochemistry’, in Comets, L.L. Wilkening (ed.), University of Arizona Press, Tucson, pp. 480–495.

    Google Scholar 

  • Jackson, W.M., and R.J. Cody (1974). ‘Laser Photoluminescence Spectroscopy of Photodissociation Fragments’, J. Chem. Phys., 61, 4183–4185.

    Article  ADS  Google Scholar 

  • Jackson, W.M., and H. Okabe (1986). ‘Photodissociation Dynamics of Small Molecules’, in Advances in Photochemistry, D.H. Volman, G.S. Hammond, and K. Gollnick (eds.), John Wiley and Sons, New York, 13, pp. 1–94.

    Chapter  Google Scholar 

  • Jackson, W.M., J.B. Halpern, and C.S. Lin (1978). ‘Multiphoton UV Photochemistry’, Chem. Phys. Lett., 55, 254.

    Article  ADS  Google Scholar 

  • Kenner, R.D., R.K. Browarzik and F. Sthul (1988). ‘Two Photon Formation of NH/ND(A3π) in the 193 nm Photolysis of Ammonia II. Photolysis of NH2’, J. Chem. Phys., 121, 457–471.

    Google Scholar 

  • Krautwald, H.-J. (1986). ‘Photodissoziationasdynamik einfacher Hydrid-Molekule im Vakuumultravioletten Spektralbereich’, Fakultat fur Physik Universitat Bielefeld.

    Google Scholar 

  • Krautwald, H.-J., L. Schnieder, K. Welge, and M.N.R. Ashfold (1986). ‘Hydrogen-Atom Photofragment Spectroscopy’, Faraday Discus. Chem. Soc, 82, 99–110.

    Article  Google Scholar 

  • Kresin, V.Z., and W.A. Lester, Jr. (1986). ‘Quantum Theory of Polyatomic Photodissociation’, in Advances in Photochemistry, D.H. Volman, G.S. Hammond, and K. Gollnick (eds.), John Wiley and Sons, New York, 13, pp. 95–163.

    Chapter  Google Scholar 

  • Leone, S.R. (1982). ‘Photofragment Dynamics’, in Advances in Chemical Physics, K.P. Lawley (ed.), John Wiley and Sons, Chichester, 50, p. 255.

    Chapter  Google Scholar 

  • Madden, S.C., W.M. Irvine, H.E. Matthews, P. Friberg, and D.A. Swade (1989). ‘A Survey of Cyclopropenylidene (C3H2) in Galactic Sources’, Astron. J., 97, 1403–1422.

    Article  ADS  Google Scholar 

  • Marsden, B.G. (1974). ‘Comets’, Ann. Rev. of Astron. and Astrophys., 12, 1–21.

    Article  ADS  Google Scholar 

  • Matsumura, K., H. Kanamori, K. Kawaguchi, and E. Hirota (1988). ‘Infrared Diode Laser Kinetic Spectroscopy of the V3 Band of C3’, J. Chem. Phys. 89, 3491–3494.

    Article  ADS  Google Scholar 

  • McDonald, J.R., A.P. Baronavski, and V.M. Donnelly (1978). ‘Multiphoton VUV Laser Photodissociation of C2H2: Emission From Electronically Excited Fragments’, Chem. Phys., 33, 161.

    Article  Google Scholar 

  • Mendis, D.A., and H.L.F. Houpis (1982). ‘The Cometary Atmosphere and its Interaction With the Solar Wind’, Rev. of Geophys. and Space Phys., 20, 885–928.

    Article  ADS  Google Scholar 

  • O’Dell, C.R., R.R. Robinson, K.S.K. Swamy, P.J. McCarthy, and H. Spinard (1988). ‘C2 in Comet Halley: Evidence for its Being Third Generation and Resolution of the Vibrational Population Discrepancy’, Astrophys. J., 334, 476–488.

    Article  ADS  Google Scholar 

  • Okabe, H. (1975). ‘Photodissociation of C2H2 and C2H Br in the VUV. Production of Electronic Excitation of C2H and C2 1’, J. Chem. Phys., 62, 2782.

    Article  ADS  Google Scholar 

  • Okabe, H. (1978). Photochemistry of Small Molecules, John Wiley and Sons, New York.

    Google Scholar 

  • Okabe, H., R.J. Cody, and J.E. Allen (1985). ‘Laser Photolysis of C2H2 and CF3C2H at 193 nm: Production of C2(d3Πg) and CH(A2Δ) and Their Quenching by Xe’, Chem. Phys., 92, 67.

    Article  Google Scholar 

  • Payne, W.A., and L.J. Stief (1972). ‘Hydrogen Formation in the Photolysis of Propyne at 1236 A’, J. Chem. Phys., 56, 3333–3336.

    Article  ADS  Google Scholar 

  • Rabalais, J.W., J.M. McDonald, V. Scheer, and S.P. McGlynn (1971). ‘Electronic Spectroscopy of Isoelectronic Molecules. II. Linear Triatomic Groups Containing Sixteen Valence Electrons’, Chem. Rev., 71, 73–108.

    Article  Google Scholar 

  • Royal Society of Chemistry (1986). Dynamics of Molecular Photofragmentation, Faraday Discussions of the Chemical Society, The Royal Society of Chemistry, London, Number 82.

    Google Scholar 

  • Saito, Y., T. Hikida, T. Ichimura, and Y. Mori (1984). ‘Fluorescence of Excited Ethynyl Radicals Produced by the Pulsed VUV Photolysis of C2H2, C2D2, and C2HBr’, J. Chem. Phys., 80, 31.

    Article  ADS  Google Scholar 

  • Sato, H. (1986). ‘Photodissociation of Simple Molecules in the Gas Phase’, Research Reports of the Faculty of Engineering, Mie Univ., 11, 123–173.

    Google Scholar 

  • Schinke, R. (1988). ‘Rotational Distributions in Direct Molecular Photodissociation’, Ann. Rev. Phys. Chem., 39, 39–68.

    Article  ADS  Google Scholar 

  • Schinke, R. (1989a). ‘Dynamics of Molecular Photodissociation’, in Collision Theory for Atoms and Molecules, F.A. Gianturco (ed.), Plenum, New York, pp. 229–285.

    Chapter  Google Scholar 

  • Schinke, R. (1989b). ‘Rotational Excitation in Direct Photodissociation and its Relation to the Anisotropy of the Excited State Potential Energy Surface. How Realistic Is the Impulsive Model?’, Comments, At. Mol. Phys., 23, 15–44.

    Google Scholar 

  • Shiu, S., S.D. Peyerimhoff, and R.J. Bunker (1979). ‘Calculated Potential Surfaces for the Description of the Emission Spectrum of the C2H Radical’, J. Molec. Spectr., 74, 124–135.

    Article  ADS  Google Scholar 

  • Shokoohi, F., T.A. Watson, H. Reisler, F. Kong, A.M. Renlund, and C. Wittig (1986). ‘Photolytic Production of C2H: Collisional Quenching of A2Π→x2Σ+ Infrared Emission and the Removal of Excited C2H’, J. Phys. Chem., 90, 5695.

    Article  Google Scholar 

  • Stief, L.J., V.J. DeCarlo, and R.J. Mataloni (1965). ‘Vacuum-Ultraviolet Photolysis of Acetylene’, J. Chem. Phys., 42, 3113–3121.

    Article  ADS  Google Scholar 

  • Urdahl, R.S., Yihan Bao, and W.M. Jackson (1988). ‘Observation of the LIF Spectra of C2(a3Πu) and C2(a1Πu) From the Photolysis of C2H2 at 193 nm’, Chem. Phys. Lett., 152, 485–490.

    Article  ADS  Google Scholar 

  • Weiner, B.R., H.B. Levine, J.J. Valentini and A.B. Baronavski (1989). ‘Ultraviolet Photodissociation Dynamics of H2S and D2S’, J. Chem. Phys., 90, 1403–1414.

    Article  ADS  Google Scholar 

  • Wodtke, A.M., and Y.T. Lee (1983). ‘Photodissociation of Acetylene at 193.3-nm’, J. Phys. Chem., 85, 4744–4751.

    Google Scholar 

  • Wodtke, A.M., and Y.T. Lee (1987). ‘High Resolution Photofragmentation Translational Spectroscopy’, in Advances in Gas-Phase Photochemistry and Kinetics, Molecular Photodissociation Dynamics, M.N.R. Ashfold and J.E. Baggott (eds.), Royal Society of Chemistry, London, pp. 31–59.

    Google Scholar 

  • Wurm, K. (1943). ‘Die Natur der Kometen’, Mitt. Hamb. Sternwartz, 8, Nr, 51.

    Google Scholar 

  • Xie, X., L. Schnieder, H. Wallmeir, U. Bottner, K.H. Welge, and M.N.R. Ashfold (1989). Photodissociation Dynamics of H2S(D2S) Following Excitation Within its First Continuum’, submitted to J. Chem. Phys.

    Google Scholar 

  • Xu, Z., B. Koplitz and C. Wittig (1989). ‘Velocity-Aligned Doppler Spectroscopy’, J. Chem. Phys., 90, 2692–2702.

    Article  ADS  Google Scholar 

  • Yamamoto, T. (1981). ‘On the Photochemical Formation of CN, C2, and C3 Radicals in Cometary Comae’, The Moon and the Planets, 24, 453–463.

    Article  ADS  Google Scholar 

  • Zhao, X. (1988). ‘Photodissociation of Cyclic Compounds in a Molecular Beam’, Lawrence Berkeley Laboratory Report, LBL-26332, Berkeley, California.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Jackson, W.M. (1991). Recent Laboratory Photochemical Studies and Their Relationship to the Photochemical Formation of Cometary Radicals. In: Newburn, R.L., Neugebauer, M., Rahe, J. (eds) Comets in the Post-Halley Era. Astrophysics and Space Science Library, vol 167. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-3378-4_14

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-3378-4_14

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-5494-2

  • Online ISBN: 978-94-011-3378-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics