Skip to main content

Cu-Ni-PGE Magmatic Sulfide Ores and their Host Layered Gabbros in the Haymiliyah Fossil Magma Chamber (Haylayn Block, Semail Ophiolite Nappe, Oman)

  • Conference paper
Ophiolite Genesis and Evolution of the Oceanic Lithosphere

Part of the book series: Petrology and Structural Geology ((PESG,volume 5))

Abstract

A disseminated sulfide-rich zone has been discovered in the gabbroic magma chamber of the Wadi Haymiliyah (Haylyn Block), located in the upper part of the main coarse-grained layered gabbro unit, immediately below a thick, laminated and fine-grained noritic unit. In this 150 m thick zone, thin, fine-grained, concordant layers of noritic gabbro first appear in the layered gabbros, and contain most of the disseminated sulfides. The cumulates are weakly affected by hydrothermal alteration and hence, magmatic textures are well preserved. At the base of the section, the cumulates comprise olivine gabbros, gabbros and two-pyroxene gabbros. In the uppermost two-thirds of the sulfide-rich zone, two-pyroxene gabbros become predominant and grade locally into noritic gabbros and writes. This zone constitutes a transitional unit between an open-system fractionation represented by thé main layered gabbro unit, and a closed-system fractionation corresponding to the planar-laminated noritic gabbros.

At the thin section scale, the sulfide content ranges from <1% to 30%. From the bottom to the top, the relative proportion of sulfides increases in parallel with the abundance of orthopyroxene. When fine-grained twopyroxene gabbros and coarse-grained gabbros are in contact, the sulfides are preferentially concentrated in the two-pyroxene gabbros. Sulfides are observed as spherical inclusions in plagioclase, clinopyroxene and orthopyroxene crystals, as well as intercumulus grains. “Net-textured” sulfides are observed in the layers richest in sulfides. Textural criteria evoke the segregation of an immiscible sulfide liquid which separated from a basaltic melt, prior to the first appearance of orthopyroxene as a main cumulus phase.

Three sulfide associations were observed: 1) Pyrrhotite with pentlandite and chalcopyrite characterize the base of the sulfide-rich zone. 2) Massive pyrite may be associated with chalcopyrite and pyrrhotite, accounting for more than 60% of the sulfide paragenesis. 3) In hydrothermally altered samples, pyrrhotite is pseudomorphosed into marcassite ± pyrite (“bird eyes” textures). This transformation may be related to low-temperature off-axis hydrothermal circulations. Pentlandite and chalcopyrite occur in two habits, as blocky grains adjacent to pyrrhotite, or as exsolution bodies within pyrrhotite. PGE analyses in one of the layers richest in sulfides yield (in ppb): Os < 8, Ir < 3, Ru 32, Rh 4, Pt 37, Pd 130 and Au 150. The chondrite normalized PGE pattern has a positive slope, with a Pd/Ir ratio > 30 and Au/Ir ≈ 160 (normalized to cliondrites) typical of magmatic concentrations. Textural and mineralogical criteria are in agreement, supporting a magmatic origin for these sulfide concentrations. These sulfides are contemporaneous to the fractionation of orthopyroxene, and were precipitated as immiscible liquid droplets from an already evolved basaltic magma. The absence of sulfides in coarse-grained gabbros suggests that the MORB-type magma which has periodically replenished the Haymiliyah magma chamber was sulfur-undersaturated. Sulfur saturation is due to an increase of volatile content in the already evolved magma.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anders, E. and Ebihara, M., 1982. Solar-system abundances of the elements., Geochim. Cosmochim. Acta, 46: 2363–2380.

    Article  Google Scholar 

  • Barnes, S.J., Naldrett, A.J. and Gorton, M.P., 1985. The origin of the fractionation of Pt group elements in terrestrial magmas., Chem. Geology, 53 (3–4): 303–323.

    Article  Google Scholar 

  • Benn, K., and Nicolas, A., 1988. Mantle-crust transition zone and origin of wehrlitic magmas: Evidence from the Oman ophiolite. in: “The ophiolites of Oman”. F. Boudier and A. Nicolas, (Eds.), Tectonophysics, 151: 75–86.

    Google Scholar 

  • Buchanan, D.L. and Nolan, J., 1979. Solubility of sulfur and sulfide immiscibility in synthetic tholeiitic melts and their relevance to Bushveld complex rocks., Can. Miner., 17: 483–494.

    Article  Google Scholar 

  • Cabri, L.J., 1973. New data on phase relations in the Cu-Fe-S system., Econ. Geol., 68: 443–454.

    Article  Google Scholar 

  • Chamberlain, J.A., 1967. Sulfides in the Muskox intrusion., Canad. J. Earth. Sci., 4: 105–153.

    Article  Google Scholar 

  • Cornelius, M., Stumpfl, E.F., Gee, D. and Prochaska W., 1987. Platinum group elements in mafic-ultramafic gneiss terrain, Western Australia., Mineral. Petrol., 36: 247–265.

    Article  Google Scholar 

  • Craig, J.R. and Kullerud, G., 1969. Phase relations in the Cu-Fe-Ni-S system and their appli-cations to magmatic ore deposits, “Magmatic Ore Deposits”, Econ. Geol. Monog. 4: 343–358.

    Google Scholar 

  • Crerar, D.A. and Barnes, H.L., 1976. Solubilities of chalcopyrite and chalcocite assemblages in hydrothermal solutions at 200–390°C., Econ. Geol., 71: 772–794.

    Article  Google Scholar 

  • Crockett, J.H., 1979. Platinum-group elements in mafic and ultramafic rocks: a survey., Canad. Mineral., 17: 391–402.

    Google Scholar 

  • Dahl, R., 1984. Etude géométrique, pétrologique et géochimique de la séquence crustale de l’ophiolite d’Oman, massif de Rustaq (bloc de Haylayn). Un modèle tridimensionnel de zone d’accrétion. Thèse Univ. Clermont-Ferrand, France, 264p.

    Google Scholar 

  • Duke, J.M. and Naldrett, A.J., 1976. Sulfide mineralogy of the Main Irruptive, Sudbury, Ontario., Can. Mineral., 14: 450–461.

    Google Scholar 

  • Duke, J.M., 1979. Computer simulation of the fractionation of olivine and molten sulfide from mafic and ultramafic magmas., Can. Miner., 17: 507–514.

    Google Scholar 

  • Economou, M. and Naldrett, A.J., 1984. Sulfides associated with podiform chromite at Tsangli, Eretria, Greece. Mineral. Deposit., 19: 289–297.

    Google Scholar 

  • Ernewein, M. and Whitechurch, H., 1986. Les intrusions ultrabasiques de la séquence crustale de l’ophiolite d’Oman: un évènement témoin de l’extinction d’une zone d’accrétion océanique?, C.R. Acad. Sci., Paris, 303, II: 379–384.

    Google Scholar 

  • Ewers, W.L. and Hudson, D.R., 1972. An interpretative study of a nickel-iron sulfide ore intersection, Lunon Shoot, Kambalda, Western Australia., Econ Geol, 76: 1075–1092.

    Article  Google Scholar 

  • Foose, M.P., Economou, M. and Panayiotou, A., 1985. Compositional and mineralogic constraints on the genesis of ophiolite-hosted nickel mineralization in the Pevkos area, Limassol Forest, Cyprus., Miner. Deposita, 20 (4): 234–240.

    Article  Google Scholar 

  • Glennie, K.W., Boeuf, M.G.A., Highes-Clarke, M.W., Moody-Stuart, M., Pilaar, W.F.H. and Reinhardt, B.M., 1974. Geology of the Oman Mountains, Part one (Text), Part two (Tables and Illustration), Part Three (enclosures) Kon. Nederlands Geol. Mijb. Gen. Ver. Verh., 31, 423p.

    Google Scholar 

  • Hamlyn, P. and Keays, R.R., 1986. Sulfur saturation and second-stage melts: application to the Bushveld platinum metal deposits., Econ. Geol., 81: 1431–1445.

    Article  Google Scholar 

  • Haughton, D.R., Roeder, P.L. and Skinner, B.J., 1974. Solubility of sulfur in mafic magmas., Econ. Geol., 69: 451–467.

    Article  Google Scholar 

  • Hoatson, D.M. and Keays, R.R., 1989. Formation of the Platiniferous sulfide horizons by crystal fractionation and magma mixing in the Munni Munni Layered Intrusion, West Pilbara Block, Western Australia., Econ. Geol, 84 (7): 1775–1804.

    Article  Google Scholar 

  • Hulbert, L.J. and Von Gruenewaldt, G., 1982. Ni, Cu and Pt mineralization in the Lower Zone of the Bushveld complex, south of Potgietersrus., Econ. Geology, 77 (6): 1296–1306.

    Article  Google Scholar 

  • Irvine, T.N., Keith, D.W. and Todd, S.G., 1983. The J.M. Platinum-Palladium Reef of the Stillwater Complex, Montana, II: Origin by double diffusive convective magma mixing and implications for the Bushveld complex., Econ. Geol., 78: 1287–1348.

    Article  Google Scholar 

  • Jackson, E.D., Green, H.W., II, and Moore, E.M., 1975. The Vourinos ophiolite, Greece: cyclic units of lineated cumulates overlying harzburgite tectonite., Geol. Soc. Amer. Bull., 86: 390–398.

    Article  Google Scholar 

  • Johnston, A.D. and Stout, J.H., 1984. Development of Opx Fe/ Mg ferrite symplectite by continuous olivine oxidation., Contr. Miner. Pet., 88 (1–2): 196–202.

    Article  Google Scholar 

  • Juteau, T. and Whitechurch, H., 1980. The magmatic cumulates of Antalya (Turkey): Evidence of multiple intrusions in an ophiolitic magma chamber. In: A. Panayiotou, (Ed.), Ophiolites, Proc. Int. Ophiolite Symp. (Cyprus, 1979). Geol. Surv. Dep. Cyprus, Nicosia, pp. 377–391.

    Google Scholar 

  • Juteau, T., Beurrier, M., Dahl, R. and Nehlig, P., 1988a. Segmentation at a fossil spreading axis: the plutonic sequence of the Wadi Haymiliyah area (Haylayn block, Samail ophiolite nappe, Oman).in: “The ophiolites of Oman”. F. Boudier and A. Nicolas, (Eds.), Tectonophysics, 151: 167–197.

    Google Scholar 

  • Juteau, T., Ernewein, M., Reuber, I., Whitechurch, H. and Dahl, R., 1988b. Duality of magmatism in the plutonic sequence of the Sumail Nappe, Oman. In: “The ophiolites of Oman”. F. Boudier and A. Nicolas, (Eds.), Tectonophysics, 151: 107–135.

    Google Scholar 

  • Keays, R.R., Nickel, D.H., Groves, D.I. and Mac Goldrick, P.J., 1982. Iridium and palladium as discriminants of volcanic-exhalative, hydrothermal, and magmatic nickel sulfide mineralizations., Econ. Geol., 77: 1535–1547.

    Article  Google Scholar 

  • Kelly, D.P. and Vaughan, D.J., 1983. Pyrrhotine-pentlandite ore textures: a mechanistic approach., Mineral. Mag., 47 (4), 453–463.

    Article  Google Scholar 

  • Kissin, S.A., Scott, S.D., 1982. Phase relations involving pyrrhotite below 350°C., Econ. Geol., 77: 1739–1755.

    Article  Google Scholar 

  • Kullerud, G., Yund, R.A. and Moh, G., 1969. Phase relations in the Cu-Fe-S, Cu-Ni-S and Fe-Ni-S systems. in “Magmatic ore deposits”., Econ. Geol. Monogr., 4: 323–343.

    Google Scholar 

  • Kushiro, I., 1979. Fractional crystallization of basaltic magma. In: The evolution of igneous rocks, Fiftieth Anniversary Perspectives., H.S. Yoder J.R. (ed), pp. 171–204.

    Google Scholar 

  • Lorand, J.P., 1987. Caractères minéralogiques et chimiques généraux des microphases du système Cu-Fe-Ni-S dans les roches du manteau suprieur: exemples d’hétérogénéités en domaine sub-continental., Bull. Soc. géol. France, (8), tIII, no. 4: 643–657.

    Google Scholar 

  • Lorand, J.P., 1988. Cu-Fe-Ni sulfide assemblages of tectonite peridotites from the Maqsad district, Sumail ophiolite, southern Oman: implications for the origin of the sulfide component in the oceanic upper-mantle. In: “The ophiolites of Oman”. F. Boudier and A. Nicolas, (Eds.), Tectonophysics, 151: 57–74.

    Google Scholar 

  • Lorand, J.P., 1989. Sulfide petrology of spinel and garnet pyroxenite layers from mantle-derived spinel peridotite massifs of Ariège (Northeastern Pyrenees, France)., J. Petrol., 30: 987–1015.

    Article  Google Scholar 

  • Lydon, J.W. and Richardson, D.G., 1988. Distribution of PGE in sulphides of the Bay of Islands ophiolite complex, Newfounlands. In: Geo-Platinum 87 (Prichard et al. (Eds)), Elsevier, pp. 251–252.

    Chapter  Google Scholar 

  • Macfarlane, N.D. and Mossman, D.J., 1981. The opaque minerals and economic geology of the Nemeiben ultramafic complex, Saskatchewan., Canada. Miner. Deposita, 16: 409–425.

    Article  Google Scholar 

  • Mason, B., 1971. Elemental abundances in meteorites. New York, Gordon and Brache Sci.Publ, 555p.

    Google Scholar 

  • Misra, K. and Fleet, M.E., 1973. The chemical composition of synthetic and natural pentlandite assemblages., Econ. Geol., 68: 518–539.

    Article  Google Scholar 

  • Mountain, B.W. and Wood, S.A., 1988. Chemical controls on the solubility, transport and deposition of platinum and palladium in hydrothermal solutions: a thermodynamic approach., Econ. Geol, 83: 492–511.

    Article  Google Scholar 

  • Naldrett, A.J., 1973. Nickel sulfide deposits. Their classification and genesis with special empha-sis on deposits of volcanic associations., Can. Inst. Met. Trans., 76: 183–201.

    Google Scholar 

  • Naldrett, A.J., 1981. Platinum-group element deposits: Canadian Inst. Mining Metallurgy Spec.,23: 1286–1295.

    Google Scholar 

  • Naldrett, A.J., 1989. Magmatic sulfide deposits. Oxford Monogr. Geol. Geophys., 14, 186p.

    Google Scholar 

  • Naldrett, A.J. and Cabri, L., 1976. Ultramafic and related mafic rocks: their classification and genesis with special reference to the concentration of nickel-sulfides and platinum group elements., Econ. Geol. Lancaster, 71: 1131–1158.

    Article  Google Scholar 

  • Naldrett, A.J. and Duke, J.M., 1980. Platinum metals in magmatic sulfide ores., Science, 208: 1417–1424.

    Article  Google Scholar 

  • Naldrett, A.J., Hoffman, E.L., Green, A.H., Chou, C.L., Naldrett, S.R. and Alcock, R.A., 1979. The composition of Ni sulfide ores with particular reference to their content of PGE and Au., Can. Mineral., 17 (2): 403–415.

    Google Scholar 

  • Naldrett, A.J., Innes, D.G., Sowa, J. and Gorton, M.P., 1982. Compositional variations within and between five Sudbury ore deposits., Econ. Geology, 77 (6): 1519–1534.

    Article  Google Scholar 

  • Nehlig, P. and Juteau, T., 1988. Flow porosities, permeabilities and preliminary data on fluid inclusions and fossil thermal gradients in the crustal sequence of the Sumail ophiolite (Oman). In: “The ophiolites of Oman”. F. Boudier and A. Nicolas, (Eds.), Tectonophysics, 151: 199–221.

    Google Scholar 

  • Page, N.J., 1971. Sulfide minerals in the G. H. Chromitite zone of the Stillwater complex Montana. U.S. Geol. Survey Prof. Paper., 694, 20p.

    Google Scholar 

  • Pallister, J.S. and Hopson, C.A., 1981. Samail ophiolite plutonic suite: field relations, phase variations cryptic variations and layering, and a model of a spreading ridge magma chamber., J. Geophys. Res., 86: 2593–2644.

    Article  Google Scholar 

  • Pasteris, J.D., 1984. Further interpretation of the Cu-Fe-Ni sulfide mineralization in the Duluth complex, Northeastern Minnesota., Can. Mineral., 22: 39–54.

    Google Scholar 

  • Peach, C.L. and Mathez, E.A., 1986. Gold and iridium in sulphides from submarine basalt glasses. E.O.S. (abstract), 410.

    Google Scholar 

  • Ripley, E.M., 1979. Sulfide petrology of basal chilled margins in layered sills of the Archean Deer Lake Complex, Minnesota., Contr. Miner. Petrol., 69: 345–354.

    Article  Google Scholar 

  • Searle, M.P. and Malpas, J., 1980. Structure and metamorphism of rocks beneath the Semail ophiolite of Oman and their significance in the ophiolite obduction., Trans. R. Soc. Edinb. Earth Sci., 71: 247–262.

    Article  Google Scholar 

  • Sillitoe, R.H., 1973. Formation of volcanogenic massive sulphide deposits., Econ. Geol., 68: 1321–1336.

    Article  Google Scholar 

  • Sun, S.S., 1982. Chemical composition and origin of the earth ‘s primitive mantle., Geochim. Cosmochim. Acta, 46: 179–192.

    Article  Google Scholar 

  • Talhammer, O., Stumpfl, E.F. and Panayiotou, A., 1986. Postmagmatic, hydrothermal origin of sulfide and arsenide mineralizations at Limassol Forest, Cyprus., Mineral. Deposita, 21: 95–105.

    Google Scholar 

  • Talkington, R.W. and Watkinson, D.M., 1986. Whole rock platinum-group element trends in chromite-rich rocks in ophiolitic and stratiform igneous complexes. In: Metallogeny of basic and ultrabasic rocks. Proceedings IMM conference, Edinburgh, 9–12 April 1985, Inst. Min. Metall., London, Ed. Gallagher et al., pp. 427–440.

    Google Scholar 

  • Upadhyay, H.D. and Strong, D.F., 1973. Geological setting of the Betts Cove copper deposits,Newfoundland: An example of ophiolite suite mineralization., Econ. Geol., 68: 161–168

    Article  Google Scholar 

  • Usselman, T.M., Hodge, D.S., Naldrett, A.J. and Campbell, LH., 1979. Physical constraint on the characteristics of Ni sulfide ores in ultramafic lavas., Can. Mineral., 17 (2): 361–371.

    Google Scholar 

  • Von Gruenewaldt, G., 1979. A review of some recent concepts of the Bushveld complex with particular reference to the sulfide mineralization. Can. Mineral. 17(2): 233–256.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Tj. Peters A. Nicolas R. G. Coleman

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Lachize, M., Lorand, J.P., Juteau, T. (1991). Cu-Ni-PGE Magmatic Sulfide Ores and their Host Layered Gabbros in the Haymiliyah Fossil Magma Chamber (Haylayn Block, Semail Ophiolite Nappe, Oman). In: Peters, T., Nicolas, A., Coleman, R.G. (eds) Ophiolite Genesis and Evolution of the Oceanic Lithosphere. Petrology and Structural Geology, vol 5. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-3358-6_12

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-3358-6_12

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-5484-3

  • Online ISBN: 978-94-011-3358-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics