Skip to main content
Log in

Platinum group elements in mafic-ultramafic rocks of the Western Gneiss Terrain, Western Australia

Platingruppen-Elemente in mafisch-ultramafischen Gesteinen des Western Gneiss Terrain, West-Australien

  • Published:
Mineralogy and Petrology Aims and scope Submit manuscript

Summary

The New Norcia and the Yornup bodies are situated within the high-grade Western Gneiss Terrain of the Yilgarn Block. The New Norcia body consists of mafic and ultramafic rocks of gabbronoritic, olivine-gabbronoritic and harzburgitic composition respectively, metamorphosed to amphibolite, amphibolitic serpentinite and serpentinite.

The upper part of the body is conformably intercalated with quartzites and minor psammites.

The Yornup body consists of an ultramafic zone, mainly of lherzolitec and harzburgitic and minor dunitic composition and a mafic zone of olivine-gabbronorite, which has partly been differentiated.

Chondrite-normalized PGE patterns of lherzolites and harzburgites from both localities show gentle, positive trends and abundances of approximately 0.01 times C 1. Patterns of sulphide-bearing rocks are about 0.1 times C 1, with Pd strongly enriched.

The flat patterns suggest that the magma was derived from high degrees of partial melting and underwent only minor differentiation.

Mobilization of sulphides fractionated the PGE and particularly enriched palladium.

The patterns resemble those of komatiites and komatiite-related nickel sulphides. They are distinct from steep positively trending patterns characteristic of Archean tholeiites.

It is assumed that prior to the main metamorphic event, magma compositionally similar to that of komatiites intruded at the contact of a protocontinental basement and overlying sediments forming sill-shaped bodies.

Zusammenfassung

Die Lokalitäten New Norcia and Yornup befinden sich im hochmetamorphen Teil des Yilgarn-Blockes, dem Western Gneiss Terrain.

Die New Norcia Abfolge besteht aus Amphiboliten und amphibolitischen Sepentiniten mit gabbronoritischer und olivin-gabbronoritischer sowie aus Serpentiniten mit harzburgitischer Zusammensetzung. Im Hangenden sind die Amphibolite mit Quarziten und Psammiten verzahnt.

Lherzolite, Harzburgite und untergeordnet auch Dunite bilden den ultramafischen Teil der Yornup-Abfolge, deren mafische Einheit aus Amphiboliten gabbronoritischer bis olivin-gabbronoritischer Zusammensetzung besteht und in einem Teil Differentiation zeigt.

Chondrit-normalisierte PGE Verteilungsmuster von Lherzoliten und Harzburgiten beider Lokalitäten zeigen einen schwach positiven Trend von Iridium zu Gold; die PGE-Gehalte sind ca. 0.01 fach chondritisch. Die PGE-Gehalte sulfidhaltiger Gesteine sind ca. 0.1 fach chondritisch und zeigen starke Palladium-Anreicherungen.

Aus dem flachen Verlauf der PGE-Kurven wird auf einen hohen Aufschmelzungsgrad und nur unbedeutende Differentiation geschlossen. In den mobilisierten Sulfiden fand eine Fraktionierung der PGE statt und führte insbesondere zu einer starken Anreicherung des Palladiums.

Die PGE-Kurven sind denen von Komatiiten und den mit diesen assoziierten Nickelsulfiden ähnlich und unterscheiden sich deutlich von steilen Kurven archaischer Tholeiite.

Es wird angenommen, daß vor der metamorphen Überprägung des WGT ein in der Zusammensetzung Komatiiten ähnelndes Magma zwischen einem protokontinentalen Basement und daraufliegenden Sedimenten intrudierte und sillförmige Körper bildete.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anhaeusser CR (1984) Structural elements of Archean granite greenstone terraines as exemplified by the Barberton Mountainland, Southern Africa. In:Kröner A, Greiling R (eds) Precambrian tectonics illustrated. Schweizerbart'sche Verlagsbuchhandlung, Stuttgart, pp 55–78

    Google Scholar 

  • Arndt NT, Nisbet EG (1982) What is komatiite? In:Arndt NT, Nisbet EG (eds) Komatiites. Allen & Unwin, London, pp 19–27

    Google Scholar 

  • Barnes SJ, Naldrett AJ, Gorton MP (1985) The origin of the fractionation of platinum-group elements in terrestrial magmas. Chem Geol 53: 303 324

    Google Scholar 

  • Condie KC (1981) Archaean greenstones. Developments in Precambrian geology. Elsevier 3, 434 pp

  • Donaldson MJ, Lesher CM, Groves DI, Gresham JJ (1986) Comparison of Archean dunites and komatiites associated with nickel mineralization in Western Australia: implications for dunite genesis. Miner Dep 21: 296–305

    Google Scholar 

  • Duke JM (1986) The Dumont nickel deposit: a genetic model for disseminated magmatic sulphide deposits of komatiitic affinity. In:Gallagher MJ et al (eds) Metallogeny of basic and ultrabasic rocks. Inst Mining Metall London, 151–160

  • Fryer BJ, Kerrich R (1978) Determination of precious metals at ppb-levels in rocks by a combined wetchemical and flameless atomic absorption method. Atomic absorption newsletter 17: 4–60

    Google Scholar 

  • Gee RD (1979) Structure and tectonic style of the Western Australian Shield. Tectonophysics 58:327–369

    Google Scholar 

  • ——Trendall AF (1986) Relation between Archaean high-grade gneiss and granitegreenstone terrain in Western Australia. Precam Res 33: 87–102

    Google Scholar 

  • Gijbels R, Henderson P, Zels J (1976) Geochemistry of some trace elements in mineral separates from Rhum, Inner Hebrides, with special emphasis on iridium. Econ Geol 71: 1364–1370

    Google Scholar 

  • Glikson AY (1979) Early Precambrian tonalite-trondhjemite sialic nuclei. Earth Sci Rev 15: 1–73

    Google Scholar 

  • Harrison PH (1984) The mineral potential of layered igneous complexes within the Western Gneiss Terrain. In: Professional papers for 1984 of the Geol Surv of W. A. 19. Gov Printing Office, Perth, pp 37–54

    Google Scholar 

  • Keays RR (1982) Palladium and iridium in komatiites and associated rocks: application to petrogenetic problems. In:Arndt TN, Nisbet EG (eds) Komatiites. Allen & Unwin, London, pp 435–458

    Google Scholar 

  • Keays RR, Campbell IH (1981) Precious metals in the Jimberlana Instrusion, Western Australia: Implications for the genesis of platiniferous ores in layered intrusions. Econ Geol 76: 1118–1141

    Google Scholar 

  • ——,Ross JR, Woolrich P (1981) Precious metals in volcanic peridotite-associated nickelsulphide deposits in Western Australia II. Econ Geol 76: 1645–1674

    Google Scholar 

  • Kruse H, Spettel B (1982) A combined set of automatic and interactive programs for instrumental neutron activation analysis. J Radioanalytical Chem 70: 427–434

    Google Scholar 

  • Lee CA, Tredoux M (1986) Platinum-group element abundances in the Lower and the Lower Critical Zones of the Eastern Bushveld Complex. Econ Geol 81: 1087–1095

    Google Scholar 

  • Mitchell RH, Keays RR (1981) Abundance and distribution of gold, palladium and iridium in some spinel and garnet lherzolites-implications for the nature and origin of precious metal-rich intergranular components in the upper mantle. Geochim Cosmochim Acta 45: 2425–2442

    Google Scholar 

  • Morgan WR (1984) The harzburgite member of an ultramafic body in granulites, Lake Kondinin, Western Australia. J Roy Soc W A 66, part 4, 135–145

    Google Scholar 

  • —— (1982) A layered ultramafic intrusion in Archaean granulites near Lake Kondinin, Western Australia. J Roy Soc W A 65, part 2, 69–85

    Google Scholar 

  • Myers JS, Williams JR (1985) Early Precambrian crustal evolution at Mount Narryer, Western Australia. Precambrian Res 27: 153–163

    Google Scholar 

  • Naldrett AJ (1981) Nickel sulfide deposits: classification, composition and genesis. Econ Geol 75: 628–655

    Google Scholar 

  • ——,Barnes SJ (1986) The behaviour of platinum group elements during fractional crystallization and partial melting with special reference to the composition of magmatic sulfide ores. Fortschr Mineralogic 64: 113–133

    Google Scholar 

  • Page NJ, Cassard D, Haffty J (1982) Palladium, Platinum, Rhodium, Ruthenium and Iridium in Chromitites from the Massif du Sud and Tie6aghi Massif, New Caledonia. Econ Geol 77: 1571–1577

    Google Scholar 

  • Palme H, Suess HE, Zeh DH (1981) Abundances of the elements in the solar system. In:Landolt-Börnstein, New Series VI/2 a, Springer, Berlin Heidelberg New York, p 257

    Google Scholar 

  • Porter DJ, McKay KG (1981) The nickel sulphide mineralization and metamorphic setting of the Forrestania area, Western Australia. Econ Geol 76: 1524–1549

    Google Scholar 

  • Ross JR, Keays RR (1979) Precious metals in volcanic-type nickel sulphide deposits in Western Australia, I. Relationship with the composition of the ores and their host rocks. Can Mineral 17: 417–435

    Google Scholar 

  • Shackleton RM (1976) Shallow and deep level exposures of the Archaean crust in India and Africa. In:Windley BF (ed) Early history of the earth. Wiley, London, pp 317–322

    Google Scholar 

  • Stumpf, EF (1986) Distribution, transport and concentration of platinum group elements. In:Gallagher MJ et al (eds) Metallogeny of basic and ultrabasic rocks. Inst Mining Metall, London, 379–394

    Google Scholar 

  • Sun SS (1982) Chemical composition and origin of the earth's primitive mantle. Geochim Cosmochim Acta 46: 179–192

    Google Scholar 

  • Wänke H, Kruse H, Palme H, Spettel B (1977) Instrumental neutron activation analysis of Lunar samples and the identification of primary matter in the Lunar highlands. Radioanalytical Chem 38: 363–378

    Google Scholar 

  • Weaver BL, Tarney J (1981) Lewisian gneiss geochemistry and Archaean crustal development models. Earth Planet Sci Lett 55: 171–180

    Google Scholar 

  • Windley BF, Bridgewater D (1971) The evolution of Archaean low and high-grade terrains. Geol Soc Austr Spec Publ 3: 33–46

    Google Scholar 

  • Wilde SA (1974) Explanatory notes on the Archaean rocks on the Perth 1 : 250 000 geological sheet, Western Australia. West Australia Geol Survey Rec 1974/15

  • Walker JW (1981) Explanatory notes on the Pemberton-Irwin Inlet 1 : 250 000 geological sheet. West Australia Geol Survey Rec 1981/10

  • ——,Pidgeon RT (1986) Geology and geochronology of the Saddleback greenstone belt in the Archaean Yilgarn block. Australian Journal of Earth Sciences 33 (4): 491–502

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

With 8 Figures

Contribution to the Ore Mineralogy Symposium (IMA/COM) at the 14th General Meeting of the International Mineralogical Association, at Stanford, California, in July, 1986.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cornelius, M., Stumpfl, E.F., Gee, D. et al. Platinum group elements in mafic-ultramafic rocks of the Western Gneiss Terrain, Western Australia. Mineralogy and Petrology 36, 247–265 (1987). https://doi.org/10.1007/BF01163263

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01163263

Keywords

Navigation