Use of comparative in situ hybridization and immunocytochemistry for the study of regulatory peptides

  • Giorgio Terenghi
  • Julia M. Polak


In the past decade immunocytochemistry has revolutionized the approach to morphological studies of tissues, allowing the localization of specific peptides and other cellular markers to be demonstrated. However, the knowledge gained by identifying cellular antigens is limited, as simple localization cannot give any information on the dynamic changes of cellular metabolic processes. The recent introduction of in situ hybridization for mRNA or DNA using labelled complementary nucleic acid probes has made possible the understanding of gene expression at the cellular level in different physiological and pathological conditions. Compared to other morphological and molecular biological techniques, in situ hybridization offers precise anatomical localization and increased sensitivity, opening completely new horizons to the scope of morphological studies.


Dorsal Root Ganglion Atrial Natriuretic Peptide Ventral Horn Haematoxylin Counterstain Atrial Natriuretic Peptide Gene Expression 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Angerer RC, Cox KH and Angerer LM (1985) In situ hybridization to cellular RNAs. Genet. Eng. 7: 43–65.Google Scholar
  2. Bhatt B, Burns J, Flannery D and McGee JO’D (1988) Direct visualisation of single copy genes on banded metaphase chromosome by nonisotopic in situ hybridization. Nuc. Acids Res. 16: 3951–3961.CrossRefGoogle Scholar
  3. Bishop AE, Hamid QA, Adams C, Bretherton-Watt D, Jones PM, Denny P, Stamp GWM, Hurt RL, Grimelius L, Harmar AJ, Valentino K, Cedermark B, Legon S, Ghatei MA, Bloom SR and Polak JM (1989) Expression of tachykinins by ileal and lung carcinoid tumours assessed by combined in situ hybridization, immunocytochemistry and radioimmunoassay. Cancer 63: 1129–1137.PubMedCrossRefGoogle Scholar
  4. Brahic M, Haase AT and Cash E (1984) Simultaneous in situ detection of viral RNA and antigens. Proc. Natl. Acad. Sci. USA 81: 5445–5448.PubMedCrossRefGoogle Scholar
  5. Brysch W, Hagendorff G and Schlingensiepen (1988) RNA probes transcribed from synthetic DNA for in situ hybridization. Nuc. Acids Res. 16: 2333.CrossRefGoogle Scholar
  6. Casey J and Davidson N (1977) Rates of formation and thermal stabilities of RNA:RNA and DNA:DNA duplexes at high concentration of formamide. Nuc. Acids Res. 4: 1539–1552.CrossRefGoogle Scholar
  7. Chan-Palay V, Yasargil G, Hamid Q, Polak JM and Palay SL (1988) Simultaneous demonstration of neuropeptide Y gene expression and peptide storage in single neurons of the human brain. Proc. Natl. Acad. Sci. USA 85: 3213–3215.PubMedCrossRefGoogle Scholar
  8. Cox KH, De Leon DV, Angerer LM and Angerer RC (1984) Detection of mRNA’s in sea urchin embryos by in situ hybridization using asymmetric RNA probes. Dev. Biol. 101: 485–502.PubMedCrossRefGoogle Scholar
  9. Davenport AP and Nunez DJ (1990) Quantification in in situ hybridization. In: In Situ Hybridization — Principles and Practice. (Polak JM and McGee JO’D eds), Oxford University Press.Google Scholar
  10. Denny P, Hamid Q, Krause JE, Polak JM and Legon S (1988) Oligoriboprobes: tools for in situ hybridization. Histochemistry 84: 481–483.CrossRefGoogle Scholar
  11. Giaid A, Hamid H, Adams C, Springall DR, Terenghi G, Polak JM (1989a) Non-isotopic RNA probes. Comparison between different labels and detection systems. Histochemistry 93: 191–196.Google Scholar
  12. Giaid A, Gibson SJ, Ibrahim NBN, Legon S, Bloom SR, Yanagisawa M, Masaki T, Varndell IM and Polak JM (1989b) Endothelin 1, an endothelium-derived peptide is expressed in neurons of the human spinal cord and dorsal root ganglia. Proc. Natl. Acad. Sci. USA 86: 7634–7638.PubMedCrossRefGoogle Scholar
  13. Gibson SJ, Polak JM, Bloom SR, Sabate IM, Mulderry PK, Morrison JFB, Kelly JS, Rosenfeld MG and Evans R (1984) Calcitonin gene-related peptide immunoreactivity in the spinal cord of man and eight mammalian species. J. Neurosci. 4: 3101–3111.PubMedGoogle Scholar
  14. Gibson SJ, Polak JM, Giaid A, Hamid QA, Kar S, Jones PM, Denny P, Legon S, Amara SG, Craig RK, Bloom SR, Penketh RJA, Rodek C, Ibraim NBN and Dawson A (1988) Calcitonin gene-related peptide mRNA is expressed in sensory neurons of the dorsal root ganglia and also in spinal motoneurones in man and rat. Neurosci. Lett. 91: 283–288.PubMedCrossRefGoogle Scholar
  15. Gillam IC (1987) Non-radioactive probes for specific DNA sequences. Tib. Tech. 5: 332–334.Google Scholar
  16. Hamid Q, Wharton J, Terenghi G, Hassall CJ, Aimi J, Taylor KM, Nakazato H, Dixon JE, Burnstock G and Polak JM (1987) Localization of atrial natriuretic peptide mRNA and immunoreactivity in the rat heart and human atrial appendage. Proc. Natl. Acad. Sci. USA 84: 6760–6764.PubMedCrossRefGoogle Scholar
  17. Hamid QA, Bishop AE, Springall DR, Adams C, Giaid A, Denny P, Ghatei M, Legon S, Cutitta F, Rode J, Spindel E, Bloom SR and Polak JM (1989) Detection of human probombesin mRNA in neuroendocrine (small cell) carcinoma of the lung. Cancer 63: 266–271.PubMedCrossRefGoogle Scholar
  18. Hofler H, Putz B, Rurhi C, Wirnsberger G, Klimpfinger M and Smolle J (1987) Simultaneous localization of calcitonin mRNA and peptide in a medullary thyroid carcinoma. Virchow. Arch. B 54: 144–151.CrossRefGoogle Scholar
  19. Hopman AHN, Wiegant J, Raap AK, L andegent JE, van der Ploeg M and van Dujin P (1986) Bi-colour detection of two target DNAs by non-radioactive in situ hybridization. Histochemistry 85: 1–4.PubMedCrossRefGoogle Scholar
  20. Inoue A, Yanagisawa M, Kimura 5, Kaswya Y, Miyauchi T, Goto T and Masaki T (1989) The human endothelin family: three structurally and pharmacologically distinct isopeptides predicted by three separate genes. Proc. Natl. Acad. Sci. USA 86: 2863–2867.PubMedCrossRefGoogle Scholar
  21. Lawrence JB, Villnave CA and Singer RH (1988) Sensitive, high resolution chromatin and chromosome mapping in situ: presence and orientation of two closely integrated copies of EBV in lymphoma line. Cell 52: 51–61.PubMedCrossRefGoogle Scholar
  22. Leuhersen KR and Baum MP (1987) In vitro synthesis of biotinylated RNA probes from A-T rich templates: problems and solutions. BioTech. 5: 660–670.Google Scholar
  23. McCabe JT, Morrell JI and Pfaff DW (1986) In situ hybridization as a quantitative autoradiographic method. In: In Situ Hybridization in Brain. (Uhl GR ed.), pp. 73–96, Plenum Press, New York.CrossRefGoogle Scholar
  24. McCafferty J, Cresswell L, Alldus C, Terenghi G and Fallon R (1989) A shortened protocol for in situ hybridization to mRNA using radiolabelled RNA probes. Techniques 1: 171–182.Google Scholar
  25. Melton D, Kneg P, Rebagliati M, Maniatis T, Zinn K and Green MR (1984) Efficient in vitro synthesis of biologically active RNA and RNA hybridization probes from plasmid containing a bacteriophage SP6 promoter. Nuc. Acids Res. 12: 7035–7050.CrossRefGoogle Scholar
  26. Mitchell AR, Ambros P, Gosden JR, Morten JEN and Porteous DJ (1986) Gene mapping and physical arrangement of human chromatin in transformed hybrid cells: fluorescent and autoradiographic in situ hybridization compared. Somatic Cell Mol. Genet. 12: 313324.CrossRefGoogle Scholar
  27. Niedobitek G, Finn T, Herbst H, Bornhoft G, Gerdes J and Stein H (1988) Detection of viral DNA by in situ hybridization using bromodeoxyuridine-labelled DNA probes. Am. J. Pathol. 131: 1–4.PubMedGoogle Scholar
  28. Nunez W, Davenport AP, Emson PC and Brown MJ (1989) A quantitative in situ hybridization method using computer-assisted image analysis. Biochem J. 262: 121–127.Google Scholar
  29. Polak JM and Van Noorden S (1986) In: Immunocytochemistry — Modern Methods and Applications. 2nd edn. (Polak JM and Van Noorden S eds), Wright, Bristol.Google Scholar
  30. Polak JM (1989) Regulatory peptides, Birkhausen Verlag, Basel.CrossRefGoogle Scholar
  31. Shivers BD, Harl and RE, Pfaff DW and Schachter BS (1986a) Combination of immunocytochemistry and in situ hybridization in the same tissue section of rat pituitary. J. Histochem. Cytochem. 34: 39–43.PubMedCrossRefGoogle Scholar
  32. Shivers BD, Harlan RE, Romano GJ, Howells RD and Pfaff DW (1986b) Cellular localization and regulation of proenkephalin mRNA in rat brain. In: In Situ Hybridization in Brain. (Uhl GR ed.), pp. 3–20, Plenum Press, New York.CrossRefGoogle Scholar
  33. Singer RH, Lawrence JB and Villnave C (1986) Optimisation of in situ hybridization using isotopic and non-isotopic detection methods. BioTechniques 4: 230–250.Google Scholar
  34. Springall DR, Bhatnagar M, Wharton J, Hamid Q, Gulbenkian S, Hedges M, Meleagros L, Bloom SR and Polak JM (1988) Expression of the atrial natriuretic peptide gene in the cardiac muscle of rat extrapulmonary and intrapulmonary veins. Thorax 43: 44–52.PubMedCrossRefGoogle Scholar
  35. Steel JH, Hamid Q, Van Noorden S, Jones P, Denny P, Burrin J, Legon S, Bloom SR and Polak JM (1988a) Combined use of in situ hybridization and immunocytochemistry for the investigation of prolactin gene expression in immature, pubertal, pregnant, lactating and ovarectomized rats. Histochemistry 89: 75–80.PubMedCrossRefGoogle Scholar
  36. Steel JH, Hamid Q, Van Noorden S, Ch andrachud L, Jones P, Denny P, Burrin J, McNicol AM, Legon S, Bloom SR and Polak JM (1988b) Changes in prolactin and pro-opiomelanocortin messenger RNA in rat pituitary as shown by in situ hybridization. In: Neuroendocrine Perspectives, Vol. 6, (Scarlon MF, Wass JAH eds), Springer-Verlag, New York.Google Scholar
  37. Steel JH, O’Halloran DJ, Jones PM, Chin WW, Bloom SR and Polak JM (1989) Simultaneous immunocytochemistry and in situ hybridization of beta thyroid-stimulating hormone and its messenger ribonucleic acid in euthyroid and hypothyroid rat pituitary. Mol. Cell. Probes, 4: 385–396s.CrossRefGoogle Scholar
  38. Terenghi G, Polak JM, Ghatei MA, Mulderry PK, Butler JM, Unger WG and Bloom SR (1985) Distribution and origin of calcitonin generelated peptide immunoreactivity in the sensory innervation of the mammalian eye. J. Comp. Neurol. 233: 506–516.PubMedCrossRefGoogle Scholar
  39. Terenghi G, Polak JM, Hamid Q, O’Brien E, Denny P, Legon S, Dixon J, Minth CD, Palay SL, Yasargil G and Chan-Palay V (1987) Localization of neuropeptide Y mRNA in neurons of human cerebral cortex by means of in situ hybridization with a complementary RNA probe. Proc. Natl. Acad. Sci. USA 84: 7315–7318.PubMedCrossRefGoogle Scholar
  40. Terenghi G and Fallon RA (1990) Techniques and applications of in situ hybridization. In: Current Topics in Pathology — Pathology of the Nucleus, Vol. 82, (Underwood JCE ed.), pp. 289–337, Springer-Verlag, Amsterdam.Google Scholar
  41. Van der Ploeg M, L andegent JE, Hopman HHN and Raap AK (1986) Nonautoradiographic hybridocytochemistry. J. Histochem. Cytochem. 34: 126–133.Google Scholar
  42. Varndell IM, Polak JM, Sikri KL, Minth CD, Bloom SR and Dixon JE (1984) Visualisation of mRNA directing peptide synthesis by in situ hybridization using a novel single str anded cDNA probe: potential for the investigation of gene expression and endocrine cell activity. Histochemistry 81: 597–601.PubMedCrossRefGoogle Scholar
  43. Wertmur JG, Ruyecham WT and Donthart RJ (1981) Denaturation and renaturation of Penicillin crysogenum mycophage double-str anded ribonucleic acid in tetraalkylammonium salt solution. Biochemistry 20: 2999–3002.CrossRefGoogle Scholar
  44. Wolf S, Quaas R, Hahu U and Witting B (1987) Synthesis of highly radioactiyely labelled RNA hybridization probes from synthetic single-str anded DNA oligonucleotides. Nuc. Acids Res. 15: 858.CrossRefGoogle Scholar
  45. Wolfson B, Manning RW, David LG, Arentzen R and Baldino F Jr (1985) Colocalization of corticotropin releasing factor and vasopressin mRNA in neurons after adrenalectomy. Nature 315: 59–63.PubMedCrossRefGoogle Scholar
  46. Young WS and Kuhar MJ (1986) Quantitative in situ hybridization and determination of mRNA content. In: In Situ Hybridization in Brain. (Uhl GR ed.), pp. 243–248, Plenum Press, New York.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1992

Authors and Affiliations

  • Giorgio Terenghi
    • 1
  • Julia M. Polak
    • 1
  1. 1.Histochemistry Department, Royal Postgraduate Medical SchoolHammersmith HospitalLondonUK

Personalised recommendations