Skip to main content

Analysis Idealization Control for Composite Materials with Nonlinear Behavior

  • Chapter
Computer Aided Design in Composite Material Technology III
  • 370 Accesses

Abstract

Reliable modeling of the physical behavior of composite structures requires the balanced consideration of each of the analysis idealizations used to go from the physical description of the composite system to the numerical analysis models used to predict the behavior. Specification and categorization of the idealization steps associated with the analysis of nonlinear composite materials is complicated by both the complexity of the idealizations needed and the close interrelationships among the idealization steps.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Babuska, I., “Adaptive Mathematical Modeling”, in Adaptive Methods for Partial Differential Equations, P. J. Paslow, J. E. Flaherty, M. S. Shephard and J. D. Vasilakis, eds., p. 1–14, SIAM, 1989.

    Google Scholar 

  2. Shephard, M.S., Baehmann, P.L., Georges, M.K. and Korngold, E.V., “Framework for the Reliable Generation and Control of Analysis Idealizations”, Compo Meth. in Appl. Mech. Eng., 82 p. 257–280, 1990.

    Article  Google Scholar 

  3. Szabo, B.A., “On Errors of Idealization in Finite Element Analysis of Structural Connections”, in Adaptive Methods for Partial Differential Equations, P. J. Paslow, J. E. Flaherty, M. S. Shephard and J. D. Vasilakis, eds., p. 15–28, SIAM, 1989.

    Google Scholar 

  4. Shephard, M.S., Korngold, E.V. and Wentorf, R., “Design Systems Supporting Engineering Idealizations”, in Geometric Modelingfor Product Engineering, North-Holland, Amsterdam, p. 279–300, 1990.

    Google Scholar 

  5. Wentorf, R. and Shephard, M.S., “Automated Analysis Idealization Control”, in CONCURRENT ENGINEERING: Automation, Tools, and Techniques, John Wiley, New York, 1992.

    Google Scholar 

  6. Dixon, J.R., Libardi, E.C. and Nielsen, E.H., “Unresolved Research Issues in Development of Design-With-Features”, in Geometric Modeling for Product Engineering, North-Holland, Amsterdam, p. 183–196, 1990.

    Google Scholar 

  7. Dvorak, G.J. and Bahei-EI-Din, Y.A., “A Bimodal Plasticity Theory of Fibrous Composite Materials”, Acta Mechanica, 69 p. 219–241, 1987.

    Article  Google Scholar 

  8. Teply, J.L. and Dvorak, G.J., “Bounds on the Overall Instantaneous Properties of Elastic-Plastic Composites”, J. Mech. Phys. Solids, 1988, 36(1) p. 29–58.

    Article  Google Scholar 

  9. Christensen, R.M., Mechanics of Composite Materials, John Wiley, New York, 1979

    Google Scholar 

  10. Guedes, J.M. and Kikuchi, N., “Preprocessing and Postprocessing for Materials Based on the Homogenization Method with Adaptive Finite Element Methods”, Compo Meth. in Appl. Mech. Eng., 83 p. 143–198, 1990.

    Article  Google Scholar 

  11. Dvorak, G.J. and Teply, J.A., “Periodic Hexagonal Array Models for Plasticity of Composite Materials”, in Plasticity Today: Modeling, Methods and Applications, Elsevier, Amsterdam, p. 623–642, 1985.

    Google Scholar 

  12. Noor, A.K. and Burton, W.S., “Assessment of Shear Deformation Theories for Multilayered Composite Plates”, Applied Mechanics Review, 42(1) p. 1–13, 1990.

    Article  Google Scholar 

  13. Babuska, I. and Li, L., “Hierarchic Modeling of Plates”, Computers & Structures, 40(2) p. 419–430, 1991.

    Article  Google Scholar 

  14. Babuska, I., Szabo, B. and Actis, R., “Heirarchic Models for Laminated Composites”, Int. J.. Num. Meth. Eng., 33 p. 503–535, 1992.

    Article  Google Scholar 

  15. Szabo, B.A., “Hierarchic Plate and Shell Models Based on p-Extension”, in cAnalytical and Computational Models of Shells, A.K. Noor, T. Belytschko, J. C. Simo, eds., ASME, New York, p. 317–331, 1989.

    Google Scholar 

  16. Vogelius, M., “On Mathematical Modeling-Dimensional Reduction”, Institute for Physical Science and Technology, University of Maryland, College Park, Maryland, Tech. Note BN-940, 1980.

    Google Scholar 

  17. Noor, A.K. and Burton, W.S., “Assessment of Computational Models for Multilayered Composite Shells”, Appl. Mech. Review, 43 p. 67–97, 1990.

    Google Scholar 

  18. Bathe, K.J., Lee, N.S. and Bucalem, M.L., “On the Use of Hierarchical Models in Engineering Analysis”, Compo Meth. in Appl. Mech. Eng., 82 p. 5–26, 1990.

    Article  Google Scholar 

  19. Noor, A.K. and Peters, J.M., “A Posteriori Estimates for Shear Correction Factors in Multilayered Composite Cylinders”, J. Eng. Mech., 115(6) p. 1225–1244, 1989.

    Article  Google Scholar 

  20. Desai, C.S., Wathugala, G.W., Sharma, K.G. and Woo, L., “Factors Affecting Reliability of Computer Solutions with Hierarchical Single Surface Constitutive Models”, Compo Meth. in Appl. Mech. and Eng., 82 p. 115–137, 1990.

    Article  Google Scholar 

  21. Dvorak, G.J, “Plasticity Theories for Fibrous Composite Materials”, in Metal Matrix Composites, Vol. 2, Mechanisms and Properties, Academis Press, 1990.

    Google Scholar 

  22. Babuska, I., “The Problem of Modeling the Elastomechanics in Engineering”, Compo Meth. in Appl. Mech. Eng., 82 p. 155–182, 1990.

    Article  Google Scholar 

  23. Dvorak, G.J., Bahei-EI-Din, Y., Macheret, Y. and Liu, C.H., “An Experimental Study of Elastic-Plastic Behavior of a Fibrous Boron-Aluminum Composite”, J. Mech. Phys. Solids, 36 p. 655–687, 1988.

    Article  Google Scholar 

  24. Wu, J.F., “Numerical Techniques for Elastic-Plastic Analysis of Fibrous Metal Matrix Composites”, Ph.D. Thesis, Rensselaer Polytechnic Institute, 1991.

    Google Scholar 

  25. Hill, R., “Elastic Properties of Reinforced Solids: Some Theoretical Principles”, J. Mech. Phys. Solids, 11 p. 357–372, 1963.

    Article  Google Scholar 

  26. Mori, T. and Tanaka, K., “Average Stress in Matrix and Average Elastic Energy of Materials with Misfitting Inclusions”, Acta Metallurgica, 21 p. 571, 1973.

    Article  Google Scholar 

  27. Reddy, J.N., “A Generalization of Two-Dimensional Theories of Laminated Composite Plates”, Commum. Appl. Numer. Methods, 3 p. 113–180, 1987.

    Google Scholar 

  28. Barbero, E.J. and Reddy, J.N., “An Accurate Determination of Stresses in Thick Laminates Using a Generalized Plate Theory”, Int. J. Num. Meth. in Eng., 29 p. 1–14, 1990.

    Article  Google Scholar 

  29. Barbero, E.J. and Reddy, J.N., “Modeling of Delamination in Composite Laminates Using a Layer-wise Plate Theory”, Int. J. Solids Structures, 28(3) p. 373–388, 1991.

    Article  Google Scholar 

  30. Noor, A.K. and Burton, W.S., “Assessment of Computational Models for Multilayered Anisotropic Plates”, Composite Structures, 14 p. 233–265, 1990.

    Article  Google Scholar 

  31. Noor, A.K., Burton, W.S. and Peters, J.M., “Predictor-Corrector Procedures for Stress and Free Vibration Analyses of Multilayered Composite Plates and Shells”, Compo Meth. in Appl. Mech. Eng., 82 p. 341–363, 1990.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Computational Mechanics Publications

About this chapter

Cite this chapter

Shephard, M.S., Beall, M.W. (1992). Analysis Idealization Control for Composite Materials with Nonlinear Behavior. In: Advani, S.G., Blain, W.R., de Wilde, W.P., Gillespie, J.W., Griffin, O.H. (eds) Computer Aided Design in Composite Material Technology III. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-2874-2_21

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-2874-2_21

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-85166-781-9

  • Online ISBN: 978-94-011-2874-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics