Skip to main content

Flocculation of Fine Particles

  • Chapter
Innovations in Flotation Technology

Part of the book series: NATO ASI Series ((NSSE,volume 208))

Abstract

The basic principles of colloid stability, destabilisation and flocculation are reviewed, starting from the effects of simple salts. The role of adsorbed materials, especially polymers, on stability is considered in some detail and some practical implications are discussed. Factors influencing the rate of flocculation are outlined and the importance of particle size is emphasised.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hamaker, H.C. (1937) The London-van der Waals attraction between spherical particles, Physica 4, 1058–1072.

    Article  Google Scholar 

  2. Lifshitz, E.M. (1956) Theory of molecular attractive forces, Soviet Physics JETP 2, 73–83.

    Google Scholar 

  3. Dzyaloshinskii, I.E., Lifshitz, E.M., and Pitacvskii, L.P. (1960) Van der Waals forces in liquid films, Soviet Physics JETP 10, 161.

    Google Scholar 

  4. Hough, D.B., and White, L.R. (1980) The calculation of Hamaker constants from Lifshitz theory with applications to wetting phenomena, Adv. Colloid Interf. Sci. 14, 3–41.

    Article  Google Scholar 

  5. Gregory, J. (1969) The calculation of Hamaker constants, Adv. Colloid Interf. Sci. 2, 396–417.

    Article  Google Scholar 

  6. Van Oss, C.J., Omenyi, S.N., and Neumann, A.W. (1979) Negative Hamaker coefficients. II. Phase separation of polymer solutions, Colloid Polymer Sci. 257. 737–744.

    Article  Google Scholar 

  7. Hunter, R.J. (1981) Zeta Potential in Colloid Science, Academic Press, London.

    Google Scholar 

  8. Pashley, R.M., and Israelachvili, J.N. (1984) DLVO and hydration forces between mica surfaces in Mg 2+, Ca 2+, Sr 2+ and Ba 2+ chloride solutions, J. Colloid Interf. Sci. 97, 446.

    Article  Google Scholar 

  9. Clunie, J.S., Goodman, J.F., and Tate, J.R. (1968) Adsorption of inorganic ions in black foam films, Trans. Faraday Soc. 64, 1965–1970.

    Article  Google Scholar 

  10. Healy, T.W., Homola, A., and James, R.O. (1968) Coagulation of amphoteric latex colloids: reversibility and specific ion effects, Faraday Disc. Chem. Soc. 65, 156–163.

    Article  Google Scholar 

  11. Lessard, R.R., and Zieminski, S.A. (1971), Bubble coalescence and gas transfer in aqueous electrolyte solutions, Ind. Eng. Chem. Fund. 1O, 260–269.

    Article  Google Scholar 

  12. Symons, M.C.R. (1989) Liquid water -the story unfolds, Chem. Brit., 25, 491–494.

    Google Scholar 

  13. Israelachvili, J.N., and Pashley, R.M. (1984) Measurement of the hydrophobic interaction between two hydrophobic surfaces in aqueous electrolyte solutions, J. Colloid Interf. Sci. 98, 500.

    Google Scholar 

  14. Ciaesson, P.M., and Christcnson, H.K. (1988) Very long range attraction between uncharged hydrocarbon and fluorocarbon surfaces in water, J. Phys. Chem. 92, 1650–1655.

    Article  Google Scholar 

  15. Napper, D.H. (1983) Polymeric Stabilisation of Colloidal Dispersions, Academic Press, New York.

    Google Scholar 

  16. Napper, D.H. (1970) Flocculation of sterically stabilised dispersions, J. Colloid Interf. Sci. 32, 106–114.

    Article  Google Scholar 

  17. Cosgrove, T. (1990) Volume fraction profiles of adsorbed polymers, J. Chem. Soc. Faraday Trans. 86, 1323–1332.

    Article  Google Scholar 

  18. Tipping, E. (1988) Colloids in the aquatic environment, Chemistry and Industry, No. 15, 485–490.

    Google Scholar 

  19. Jekel, M.R. (1986) The stabilisation of dispersed mineral particles by adsorption of humic substances, Water Research 20, 1543–1554.

    Article  Google Scholar 

  20. Healy, T.W., and La Mer, V.K. (1964) Energetics of flocculation and redispersion by polymers, J. Colloid Sci. 19, 323–332.

    Article  Google Scholar 

  21. Hogg, R. (1984) Collision efficiency factors for polymer flocculation, J. Colloid Interf. Sci. 102. 232–236.

    Article  Google Scholar 

  22. Moudgil, B.M., Shah, B.D., and Soto, H.S. (1987), Collision efficiency factors in polymer flocculation of fine particles, J. Colloid Interf. Sci. 119, 466–473.

    Article  Google Scholar 

  23. Michaels, A.S. (1954) Aggregation of suspensions by polyelectrolytes, Ind. Eng. Chem. 46, 1485–1490.

    Article  Google Scholar 

  24. Lyklema, J., and Fleer, G.J. (1987) Electrical contribution to the effect of macromolecules on colloid stability, Colloids Surfaces 25. 357–368.

    Article  Google Scholar 

  25. Kasper, D.R. (1971) Theoretical and experimental investigations of the flocculation of charged particles in aqueous solutions by poly electrolytes of opposite charge, PhD Thesis, California Institute of Technology.

    Google Scholar 

  26. Gregory, J. (1973) Rates of flocculation of latex particles by cationic polymers, J. Colloid Interf. Sci. 42, 448–456.

    Article  Google Scholar 

  27. Gregory, J. (1976) The effect of cationic polymers on the colloidal stability of latex particles, J. Colloid Interf. Sci. 55, 35–44.

    Article  Google Scholar 

  28. Deryagin, B.V., and Landau, L.D. (1941) Theory of the stability of strongly charged lyophobic sols and of the adhesion of strongly charged particles in solutions of electrolytes, Acta Physicochim. URSS 14, 733–762.

    Google Scholar 

  29. Verwey, E.J.W., and Overbeck, J.Th.G. (1948) Theory of the Stability of Lyophobic Colloids, Elsevier, Amsterdam.

    Google Scholar 

  30. Reerink, H. and Overbeek, J.Th.G. (1954) The rate of coagulation as a measure of the stability of silver iodide sols, Disc. Faraday Soc. 18, 74.

    Article  Google Scholar 

  31. Overbeek, J.Th.G. (1980) The rule of Schulze and Hardy, Pure and Appl. Chem 52, 1151–1161.

    Article  Google Scholar 

  32. Smoluchowski, M. (1917), Versuch einer mathematischen Theorie der Koagulationskinetic kolloider Lösungen, Z. Physik. Chem. 22, 129–168.

    Google Scholar 

  33. Higashitani, K., Miyafusa, S., Matsuda, T., and Matsuno, Y. (1980) Axial change of total particle concentration in Poiseuille flow, J. Colloid Interf.-Sci. 77, 21–28.

    Article  Google Scholar 

  34. Camp, T.R., and Stein, P.C. (1943) Velocity gradients and internal work in fluid motion, J. Boston Soc. Civ. Eng. 30, 219–238.

    Google Scholar 

  35. Spielman, L.A. (1978) Hydrodynamic aspects of flocculation, in K.J Ives (ed.)The Scientific Basis of Flocculation, Sijthoff and Noordhoff, Alphen aan den Rijn, pp. 63–88.

    Chapter  Google Scholar 

  36. Cleasby, J.L. (1984) Is velocity gradient a valid flocculation parameter?, J. Env. Eng. 110, 875–897.

    Article  Google Scholar 

  37. Matijevic, E. (1973) Colloid stability and complex chemistry, J. Colloid Interf. Sci. 43, 217–245.

    Article  Google Scholar 

  38. Bottero, J.Y., Axelos, M., Tchoubar, D., Cases, J.M., Fripiat, J.J., and Fiessinger, F. (1987) Mechanism of formation of aluminum trihydroxide from keggin Al 13 polymers, J. Colloid Interf. Sci. 117, 47–57.

    Article  Google Scholar 

  39. Dentel, S.K., and Gossett, J.M. (1988), Mechanisms of coagulation with aluminum salts, J. Am. Water Works Assn. 80, 187–198.

    Google Scholar 

  40. Packham, R.F. (1965) Some studies of the coagulation of dispersed clays with hydrolysing salts, J. Colloid Sci. 20, 81–92.

    Article  Google Scholar 

  41. Amirtharajah, A., and Trusler, S.L. (1986) Destabilisation of particles by turbulent rapid mixing, J. Env. Eng. 112, 1085–1108.

    Article  Google Scholar 

  42. Flynn, C.M. (1984) Hydrolysis of inorganic iron(III) salts, Chem. Rev. 84, 31–41.

    Article  Google Scholar 

  43. Jahn, S.A.A. (1988), Using Moringa seeds as coagulants in developing countries, J. Am. Water Works Assn. 80, 43–50.

    Google Scholar 

  44. Halverson, F., and Panzer, H.P. (1980) Flocculating agents, in Kirk-Othmer : Encyclopedia of Chemical Technology (3rd Edition), Wiley, New York, vol. 10, pp. 489–523.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Gregory, J. (1992). Flocculation of Fine Particles. In: Mavros, P., Matis, K.A. (eds) Innovations in Flotation Technology. NATO ASI Series, vol 208. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-2658-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-2658-8_4

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-5175-0

  • Online ISBN: 978-94-011-2658-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics