Skip to main content

Hydrodynamic Aspects of Flocculation

  • Chapter
The Scientific Basis of Flocculation

Part of the book series: NATO Advanced Study Institutes Series ((NSSE,volume 27))

Abstract

In the classical analyses of both Brownian (perikinetic) and velocity gradient (orthokinetic) flocculation by Smoluchowski1, particle encounters in sufficiently dilute systems are treated as binary collisions between rigid spheres. In these analyses it is assumed that the relative motions between particle pairs can be described by superposition of the isolated particle motions, each particle behaving as though the others were not present. With this assumption the only permitted interactions are those of the external force fields resulting from combined attraction and repulsion. According to the far-reaching DLVO theory, the field forces are a consequence of London-van der Waals attraction and electrical double layer repulsion2.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

a:

particle radius

m

A:

Hamaker constant

J

A(s), B(s), C(s):

hydrodynamic functions

dimensionless

B(v, v):

breakup function

m3 s-1

C:

floc breakup coefficient

CA :

attraction group

dimensionless

CR :

repulsion group

dimensionless

ds :

maximum stable diameter

m

D:

absolute isolated particle diffusivity

m2s-1

Di :

absolute diffusivity of particle i

m2s-1

D12 :

relative diffusivity between unequal particles

m2s-1

Dr :

relative diffusivity between equal particles

m2s-1

D:

relative diffusivity tensor

m2s-1

Fe :

external field force

N

f(p):

electromagnetic retardation function

dimensionless

G:

velocity gradient

s-1

h:

gap between particles

m

I:

rate of encounters with reference particle

s-1

k:

Bolzmann’s constant

J °K-1

K:

coefficient in Eq (33)

m3

KB :

floc breakup rate coefficient

ℓ:

exponent in Eq (31)

m:

exponent in Eq (32)

ni :

number concentration of particle i

m-3

n(v):

number concentration distribution

m-6

N:

total number concentration

m-3

N12 :

binary encounter frequency per unit volume

s-1 m-3

P:

parameter in Eq (14)

P:

Pressure

N m-2

r:

radial separation

m

R11 :

velocity correlation function

dimensionless

s:

dimensionless radial separation

dimensionless

T:

temperature

°K

→ ur :

relative velocity vector

ms-1

ui :

Cartesian velocity component

m s-1

u′i :

turbulent velocity fluctuation

m s-1

ui :

mean velocity

m s-1

v:

floc volume

m3

V:

interaction potential energy

J

xi :

Cartesian coordinate

m

αo :

orthokinetic aggregation efficiency

dimensionless

αp :

perikinetic aggregation efficiency

dimensionless

α f p :

Fuchs’ perikinetic aggregation efficiency

dimensionless

β(v, v):

binary aggregation coefficient

m3 s-1

ε:

energy dissipation rate per unit mass

J s -1 kg-1

εf :

fluid dielectric coefficient

NV-2

η:

turbulence length microscale

m

κ:

reciprocal Debye length

m-1

λ:

wavelength for dispersion force

dimensionless

μ:

absolute viscosity

kg m-1 s-1

ν:

kinematic viscosity

m2 s-1

ρ:

fluid density

kg m-3

ι:

Debye length group

dimensionless

φ:

total suspended volume concentration

dimensionless

ψ0 :

potential at onset of diffuse double layer

V

ω:

rotor angular velocity

s-1

References

  1. Levich, V. G., Physicochemical Hydrodynamics, Ch. V, Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1962.

    Google Scholar 

  2. Verwey, J. W., Overbeek, J. Th. G., Theory of the Stability of Lyophobic Colloids, Elsevier, New York, 1948.

    Google Scholar 

  3. Stimson, M., Jeffery, G. B., The motion of two spheres in a viscous fluid, Proc. Roy. Soc, A111, 110, 1926.

    Google Scholar 

  4. Lin, C. J., Lee, K. J., Sather, N. F., Slow motion of two spheres in a shear field, J. Fluid Mech., 43, 35, 1970.

    Article  Google Scholar 

  5. Batchelor, G. K., Green, J. T., The hydrodynamic interaction of two small freely-moving spheres in a linear flow field, J. Fluid Mech., 56, 375, 1972.

    Article  Google Scholar 

  6. Deryagin, B. V., Muller, V. M., Slow coagulation of hydro-phobic colloids, Doklady Akademii Nauk SSSR, (Engl. transl.), 176, 869, 1967.

    Google Scholar 

  7. Spielman, L. A., Viscous interactions in Brownian coagulation, J. Colloid Interface Sci., 33, 562, 1970.

    Article  CAS  Google Scholar 

  8. Honig, E. P., Roebersen, G. J., Wiersema, P. H., Effect of hydrodynamic interaction on the coagulation rate of hydro-phobic colloids, J. Colloid Interface Sci., 36, 97, 1971.

    Article  CAS  Google Scholar 

  9. Fuchs, N. A., The Mechanics of Aerosols, p. 305, Pergamon Press, The MacMillan Co., New York, 1964.

    Google Scholar 

  10. Curtis, A. S. G., Hocking, L. M., Collision efficiency of equal spherical particles in a shear flow, Trans. Far. Soc., 66, 1381, 1970.

    Article  CAS  Google Scholar 

  11. van de Ven, T.G.M., Mason, S.G., The microrheology of colloidal dispersions IV. Pairs of interacting spheres in shear flow, J. Colloid Interface Sci., 57, 505, 1976.

    Article  Google Scholar 

  12. van de Ven, T.G.M., Mason, S.G., The microrheology of colloidal dispersions V. Primary and secondary doublets of spheres in shear flow, J. Colloid Interface Sci., 57, 517, 1976.

    Article  Google Scholar 

  13. van de Ven, T.G.M., Mason, S.G., The microrheology of colloidal dispersions VI. Chains of spheres in shear flow, J. Colloid Interface Sci., 57, 535, 1976.

    Article  Google Scholar 

  14. van de Ven, T. G. M., Mason, S. G., The microrheology of colloidal dispersions VII. Orthokinetic doublet formation of spheres, Colloid and Polymer Sci., in press, 1977.

    Google Scholar 

  15. van de Ven, T. G. M., Mason, S. G., The microrheology of colloidal dispersions VIII. Effect of shear on perikinetic doublet formation, Colloid and Polymer Sci., in press, 1977.

    Google Scholar 

  16. Schenkel, J. M., Kitchener, J. A., A test of the Derjaguin-Landau-Verwey-Overbeek theory with a colloid suspension, Trans. Far. Soc., 56, 161, 1960.

    Article  CAS  Google Scholar 

  17. Friedlander, S. K., Smoke, Dust and Haze, p. 190, Wiley-Interscience, New York, 1977.

    Google Scholar 

  18. Wolynes, P. G., McCammon J. A., Hydrodynamic effect on the coagulation of porous biopolymers, Macromolecules, 10, 86, 1977.

    Article  CAS  Google Scholar 

  19. Batchelor, G. K., The Theory of Homogeneous Turbulence, Cambridge Univ. Press, Cambridge, England, 1958.

    Google Scholar 

  20. Saffman, P. G., Turner, J. S., On the collision of drops in turbulent clouds, J. Fluid Mech., 1, 16, 1956.

    Article  Google Scholar 

  21. Taylor, G. I., Statistical theory of turbulence, Parts I-IV, Proc. Roy. Soc, A151, 421, 1935.

    Google Scholar 

  22. Camp, T. R. and Stein, P. C., Velocity gradients and internal work in fluid motion, J. Boston Soc. Civ. Eng., 30, 219, 1943.

    Google Scholar 

  23. Delichatsios, M. A., Probstein, R. F., Coagulation in turbulent flow: Theory and experiment, J. Colloid Interface Sci., 51, 394, 1975.

    Article  Google Scholar 

  24. McCabe, W. L., Smith, J. C., Unit Operations of Chemical Engineering, Ch. 6, McGraw-Hill, Inc., New York, 1956.

    Google Scholar 

  25. Fair, G. M., Gemmel, R. S., A mathematical model of coagulation, J. Coll. Sci., 19, 360, 1964.

    Article  Google Scholar 

  26. Ives, K. J., Bhole, A. G., Theory of flocculation for continuous flow system, J. Env. Eng. Div., Proc. Amer. Soc. Civ. Engrs., 99, EE1, 17, 1973.

    CAS  Google Scholar 

  27. Argaman, Y., Kaufman, W. J., Turbulence and Flocculation, J. San. Eng. Div., Proc. Amer. Soc. Civ. Engrs., 96, SA2, 223, 1970.

    Google Scholar 

  28. Parker, D. S., Kaufman, W. J., Jenkins, D., Floc breakup in turbulent flocculation processes, J. San. Eng. Div., Proc. Amer. Soc. Civ. Engrs., 98, SA1, 79, 1972.

    Google Scholar 

  29. Kao, S. V., Mason, S. G., Dispersion of particles by shear, Nature, 253, 619, 1975.

    Article  CAS  Google Scholar 

  30. Quigley, J. E., Strength Properties of Liquid-Borne Flocculated Matter, M. S. Thesis, Univ. of Delaware, Newark, Delaware, 1977.

    Google Scholar 

  31. Quigley, J. E., Spielman, L. A., Strength Properties of Liquid Borne Flocs, Motion picture, Project No. A-036-DEL Water Resources Center, Univ. of Delaware, Newark, Delaware, 1977.

    Google Scholar 

  32. Valentas, K. J., Amundson, N. R., Breakage and coalescence in dispersed phase systems, Ind. Eng. Chem Fund., 5, 533, 1966.

    Article  CAS  Google Scholar 

  33. Valentas, K. J., Bilous, O., Amundson, N. R., Analysis of breakage in dispersed phase systems, Ind. Eng. Chem. Fund., 5, 271, 1966.

    Article  CAS  Google Scholar 

  34. Friedlander, S. K., Smoke, Dust and Haze, p. 194, Wiley-Interscience, New York, 1977.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1978 Sijthoff & Noordhoff International Publishers B.V.

About this chapter

Cite this chapter

Spielman, L.A. (1978). Hydrodynamic Aspects of Flocculation. In: Ives, K.J. (eds) The Scientific Basis of Flocculation. NATO Advanced Study Institutes Series, vol 27. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-9938-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-9938-1_4

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-009-9940-4

  • Online ISBN: 978-94-009-9938-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics