Skip to main content

Planktonic food chains of a highly humic lake

I. A mesocosm experiment during the spring primary production maximum

  • Chapter
Dissolved Organic Matter in Lacustrine Ecosystems

Part of the book series: Developments in Hydrobiology ((DIHY,volume 73))

  • 200 Accesses

Abstract

The development and metabolism of the plankton of a highly humic lake were followed over the vernal primary production maximum. The study was made in a mesocosm in which large filter feeders, typical of this lake in summer, were absent. During the rising phase of phytoplankton, the community was predominantly autotrophic. The most important constituents in the algal biomass were a dinoflagellate, Gymnodinium sp. (40–50%), and a prasinophycean, Scourfieldia cordiformis (7%). The biomasses of Chlamydomonas spp. and Chrysococcus spp. reached their maxima a few days later and Cryptomonas sp. became most abundant at the end of the experiment. After the phytoplankton maximum, about one week from the beginning of the experiment, grazing of algae by phagotrophic protozoans and phosphate depletion led to a rapid decrease of algal biomass and the community became predominantly heterotrophic. In spite of a large variation in algal biomass and primary production, the biomass of bacteria remained of the same order of magnitude as in algae both before and after the algal maximum. Bacteria were mostly responsible for the plankton respiration, which also showed no dependence on primary production. Since exudation by phytoplankton was also low, the nutrition of bacterioplankton was probably mainly based on allochthonous dissolved organic matter rather than on primary production. Thus the production of bacteria was an additional food source for higher trophic levels along with phytoplankton. Because filter feeding Zooplankton was absent in the experiment, protozoans were the only grazers utilizing algae and bacteria. Essentially all growth of bacteria was used by bacterivores.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aaronson, S., 1973. Particle aggregation and phagotrophy by Ochromonas. Arch. Mikrobiol. 92: 39–44.

    Article  PubMed  CAS  Google Scholar 

  • Aaronson, S., 1980. Descriptive biochemistry and physiology of the Chrysophyceae (with some comparisons to the Prymnesiophyceae), pp. 118–169. In Levandowsky, M. & S. H. Hunter (eds.), Biochemistry and physiology of the Protozoa. Academic.

    Google Scholar 

  • Andersen, P. & T. Fenchel, 1985. Bacterivory by microheterotrophic flagellates in seawater samples. Limnol. Oceanogr. 30: 198–202.

    Article  Google Scholar 

  • Andersson, A., C. Lee, F. Azam & Å. Hagström, 1985. Release of amino acids and inorganic nutrients by heterotrophic marine microflagellates. Mar. Ecol. Progr. Ser. 23: 99–106.

    Article  CAS  Google Scholar 

  • Andersson, A., V. Larsson & Å. Hagström, 1986. Size-selective grazing by a microflagellate on pelagic bacteria. Mar. Ecol. Progr. Ser. 33: 51–57.

    Article  Google Scholar 

  • Andersson, A., S. Falk, G. Samuelsson & Å. Hagström, 1989. Nutritional characteristics of a mixotrophic nanoflagellate, Ochromonas sp.. Microb. Ecol. 17: 251–262.

    Article  CAS  Google Scholar 

  • Arvola, L., 1983. Primary production and phytoplankton in two small, polyhumic forest lakes in S. Finland. Hydrobiologia 101: 105–110.

    Article  Google Scholar 

  • Arvola, L., 1986. Spring phytoplankton of 54 small lakes in southern Finland. Hydrobiologia 137: 125–134.

    Article  Google Scholar 

  • Arvola, L. & P. Kankaala, 1989. Winter and spring variability in phyto-and bacterioplankton in lakes with different water colour. Aqua fenn. 19: 29–39.

    CAS  Google Scholar 

  • Arvola, L., K. Salonen & M. Rask, 1990. Chemical budgets for a small dystrophic lake in southern Finland. Limnologica 20: 243–251.

    CAS  Google Scholar 

  • Bergström, I., A. Heinänen & K. Salonen, 1986. Comparison of acridine orange, acriflavine and bisbenzimide stains for enumeration of bacteria in clear and humic waters. Appl. envir. Microbiol. 51: 664–667.

    Google Scholar 

  • Bloem, J., F. M. Ellenbroek, M.-J. B. Gilissen & T. E. Cappenberg, 1989. Protozoan grazing and bacterial production in stratified lake Vechten estimated with fluorescently labeled bacteria and thymidine incorporation. Appl. envir. Microbiol. 55: 1787–1795.

    CAS  Google Scholar 

  • Bloem, J., M. Starink, M.-J. B. Gilissen & T. E. Cappenberg, 1988. Protozoan grazing, bacterial activity and mineralization in two-stage continuous cultures. Appl. envir. Microbiol. 54: 3113–3121.

    CAS  Google Scholar 

  • Boraas, M., K. W. Estep, P. W. Johnson & J. M. Sieburth, 1988. Phagotrophic phototrophs: The ecological significance of mixotrophy. J. Protozool. 25: 249–252.

    Google Scholar 

  • Børsheim, K. Y. & G. Bratbak, 1987. Cell volume to cell carbon conversion factors for a bacteriovorous Monas sp. enriched from sea water. Mar. Ecol. Progr. Ser. 36: 171–175.

    Article  Google Scholar 

  • Caron, D. A., J. C. Goldman, O. K. Andersen & M. R. Dennett, 1985. Nutrient cycling in a microflagellate food chain: II. Population dynamics and carbon cycling. Mar. Ecol. Progr. Ser. 24: 243–254.

    Article  CAS  Google Scholar 

  • Cole, G. T. & M. J. Wynne, 1974. Endocytosis of Microcystis aeruginosa by Ochromonas danica. J. Phycol. 10: 397–410.

    Google Scholar 

  • Daley, R. J., G. P. Morris & S. R. Brown, 1973. Phagotrophic ingestion of a blue-green alga by Ochromonas. J. Protozool. 20: 58–61.

    Google Scholar 

  • Davis, G. P., D. A. Caron, P. W. Johnson & J. McN. Sieburth, 1985. Phototrophic and apochlorotic components of picoplankton and nanoplankton in the North Atlantic: geographic, vertical, seasonal and diel distributions. Mar. Ecol. Progr. Ser. 21: 15–26.

    Article  Google Scholar 

  • De Haan, H., 1974. Effect of a fulvic acid fraction on the growth of a Pseudomonas from Tjeukemeer (the Netherlands). Freshwat. Biol. 4: 301–310.

    Article  Google Scholar 

  • Fenchel, T., 1982. Ecology of heterotrophic microflagellates II. Bioenergetics and growth. Mar. Ecol. Progr. Ser. 8: 225–231.

    Article  Google Scholar 

  • Fenchel, T., 1987. Ecology of protozoa. The biology of free-living phagotrophic protists. Brock/Springer Series In Contemporary Bio science, Ann Arbor. 197 pp.

    Google Scholar 

  • Fuhrman, J. A., R. W. Eppley, Å. Hagström & F. Azam, 1985. Diel variations in bacterioplankton, phytoplankton, and related parameters in the Southern California Bight. Mar. Ecol. Progr. Ser. 27: 9–20.

    Article  Google Scholar 

  • Goldman, J. C., D. A. Caron, O. K. Andersen & M. R. Dennett, 1985. Nutrient cycling in a microflagellate food chain: I. Nitrogen dynamics. Mar. Ecol. Progr. Ser. 24: 231–242.

    Article  CAS  Google Scholar 

  • Gonzales, J. M., E. B. Sherr & B. F. Sherr, 1990. Size-selective grazing on bacteria by natural assemblages of estuarine flagellates and ciliates. Appl. envir. Microbiol. 56: 583–589.

    Google Scholar 

  • Guillard, R. R. L., 1973. Division rates. In J. R. Stein (ed.), Handbook of phycological methods, culture methods and growth measurements. Cambridge Univ. Press, Cambridge, pp. 289–311.

    Google Scholar 

  • Güde, H., 1985. Influence of phagotrophic processes on the regeneration of nutrients in two-stage continuous culture systems. Microb. Ecol. 11: 193–204.

    Article  Google Scholar 

  • Güde, H., 1986. Loss processes influencing growth of planktonic bacterial populations in Lake Constance. J. Plankton Res. 8: 795–810.

    Article  Google Scholar 

  • Hagström, Å., F. Azam, A. Andersson, J. Wikner & F. Ras-soulzadegan, 1988. Microbial loop in an oligotrophic pelagic marine ecosystem: possible roles of cyanobacteria and nanoflagellates in the pelagic fluxes. Mar. Ecol. Progr. Ser. 49: 171–178.

    Article  Google Scholar 

  • Hessen, D. O., 1985. The relation between bacterial carbon and dissolved organic humic compounds in oligotrophic lakes. FEMS Microbiol. Ecol. 31: 215–223.

    Article  CAS  Google Scholar 

  • Hessen, D. O. & A. K. Schartau, 1988. Seasonal and spatial overlap between cladocerans in humic lakes. Int. Revue ges. Hydrobiol. 73: 379–405.

    Article  Google Scholar 

  • Hessen, D. O., T. Andersen & A. Lyche, 1990. Carbon metabolism in a humic lake: Pool sizes and cycling through Zooplankton. Limnol. Oceanogr. 35: 84–99.

    Article  CAS  Google Scholar 

  • Ishida, Y. & B. Kimura, 1986. Photo synthetic phagotrophy of Chrysophyceae: evolutionary aspects. Microbiol. Sciences 3: 132–135.

    CAS  Google Scholar 

  • Jaworski, G. H. M., J. F. Tailing & S. I. Heaney, 1981. The influence of carbon dioxide-depletion on growth and sinking rate of two planktonic diatoms in culture. Br. phycol. J. 16: 395–410.

    Article  Google Scholar 

  • Jeffrey, S. W. & G. M. Hallegraeff, 1987. Chlorophyllase distribution in ten classes of phytoplankton: a problem for chlorophyll analysis. Mar. Ecol. Progr. Ser. 35: 293–304.

    Article  CAS  Google Scholar 

  • Johansson, J.-Å., 1983. Seasonal development of bacterioplankton in two forest lakes in central Sweden. Hydrobiologia 101: 71–88.

    Article  Google Scholar 

  • Jones, R. I. & K. Salonen, 1985. The importance of bacterial utilization of released phytoplankton photosynthate in two humic forest lakes in southern Finland. Holarct. Ecol. 8: 133–140.

    Google Scholar 

  • Kankaala, P., 1988. The relative importance of algae and bacteria as food for Daphnia longispina (Cladocera) in a polyhumic lake. Freshwat. Biol. 19: 285–296.

    Article  Google Scholar 

  • Koroleff, F., 1979. Methods for the chemical analysis of sea-water. Meri 7: 1–60 (in Finnish).

    Google Scholar 

  • Kuuppo-Leinikki, P. & K. Salonen, 1992. Bacterioplankton in a small polyhumic lake with an anoxic hypolimnion. Hydrobiologia 229: 159–168.

    Article  CAS  Google Scholar 

  • Lee, S. & J. A. Fuhrman, 1987. Relationships between biovolume and biomass of naturally derived marine bacterioplankton. Appl. envir. Microbiol. 53: 1298–1303.

    CAS  Google Scholar 

  • McManus, G. B. & J. A. Fuhrman, 1986. Bacterivory in sea-water studied with the use of inert fluorescent particles. Limnol. Oceanogr. 31: 420–426.

    Article  Google Scholar 

  • Murphy, J. & J. P. Riley, 1963. A modified single solution method for the determination of phosphate in natural waters. Analyt. chim. Acta 27: 31–36.

    Article  Google Scholar 

  • Münster, U., 1992. Extracellular enzymes in a polyhumic lake: important regulators in detritus processing. Hydrobiologia 229: 225–238.

    Article  Google Scholar 

  • Nagata, T., 1988. The microflagellate-picoplankton food link-age in the water column of lake Biwa. Limnol. Oceanogr. 33: 504–517.

    Google Scholar 

  • Niemi, M., J. Kuparinen, A. Uusi-Rauva & K. Korhonen, 1983. Preparation of 14C labelled algal samples for liquid scintillation counting. Hydrobiologia 106: 149–156.

    Article  CAS  Google Scholar 

  • Olsen, Y., A. Jensen, H. Reinertsen, K. Y. Borsheim, M. Heldal & A. Langeland, 1986. Dependence of the rate of release of phosphorus by Zooplankton on the P:C ratio in the food supply, as calculated by a recycling model. Limnol. Oceanogr. 31: 34–44.

    Article  Google Scholar 

  • Reynolds, C. S., 1988. Functional morphology and adaptive strategies of freshwater phytoplankton. In Growth and reproductive strategies of freshwater phytoplankton, Sandgren, C. D. (ed.), Cambridge Univ. Press, Cambridge, pp. 388–433.

    Google Scholar 

  • Rocha, O. & A. Duncan, 1985. The relationship between cell carbon and cell volume in freshwater algae species used in Zooplankton studies. J. Plankton Res. 7: 279–294.

    Article  Google Scholar 

  • Sanders, R. W. & P. G. Porter, 1988. Phagotrophic phytoflagellates. In Marshall, K. G. (ed.), Advances in microbial ecology. Plenum Press, New York, Vol. 10, pp. 167–192.

    Chapter  Google Scholar 

  • Salonen, K., 1979. A versatile method for the rapid and accurate determination of carbon by high temperature combustion. Limnol. Oceanogr. 24: 177–183.

    Article  CAS  Google Scholar 

  • Salonen, K., 1981. Rapid and precise determination of total inorganic carbon and some gases in aqueous solutions. Wat. Res. 15: 403–406.

    Article  CAS  Google Scholar 

  • Salonen, K. & T. Hammar, 1986. On the importance of dissolved organic matter in the nutrition of Zooplankton in some lake waters. Oecologia (Berl.) 8: 246–253.

    Article  Google Scholar 

  • Salonen, K. & S. Jokinen, 1988. Flagellate grazing on bacteria in a small dystrophic lake. Hydrobiologia 161: 203–309.

    Article  Google Scholar 

  • Salonen, K. & A. Lehtovaara, 1992. Migration of haemoglobin-rich Daphnia longispina in a small, steeply stratified, humic lake with an anoxic hypolimnion. Hydrobiologia 229: 271–288.

    Article  Google Scholar 

  • Salonen, K., K. Kononen & L. Arvola, 1983. Respiration of plankton in two small, polyhumic lakes. Hydrobiologia 101: 65–70.

    Article  Google Scholar 

  • Sarvala, J., V. Ilmavirta, L. Paasivirta & K. Salonen, 1981. The ecosystem of the oligotrophic Lake Pääjärvi. 3. Secondary production and an ecological energy budget of the lake. Verh. int. Ver. Limnol. 21: 454–459.

    Google Scholar 

  • Schiller, 1954. Uber winterliche pflanzliche Bewohner des Wassers, Eises und des daraufliegenden Schneebreies. I. sterr. Bot. Z. 101 (3).

    Google Scholar 

  • Sherr, B. F., E. B. Sherr & T. Berman, 1983. Grazing, growth, and ammonium excretion rates of a heterotrophic microflagellate fed with four species of bacteria. Appl. envir. Microbiol. 45: 1196–1201.

    CAS  Google Scholar 

  • Sherr, B. F., E. B. Sherr & R. D. Fallon, 1987. Use of monodispersed, fluorescently labelled bacteria to estimate in situ protozoan bacterivory. Appl. envir. Microbiol. 53: 958–965.

    CAS  Google Scholar 

  • Sherr, B. F., E. B. Sherr & F. Rassoulzadegan, 1988. Rates of digestion of bacteria by marine phagotrophic protozoa: temperature dependence. Appl. envir. Microbiol. 54: 1091–1095.

    CAS  Google Scholar 

  • Similä, A., 1988. Spring development of a Chlamydomonas population in Lake Nimetön, a small humic forest lake in southern Finland. Hydrobiologia 161: 149–157.

    Article  Google Scholar 

  • Solorzano, L., 1969. Determination of ammonia in natural waters by the phenolhypochlorite method. Limnol. Oceanogr. 14: 799–801.

    Article  CAS  Google Scholar 

  • Tranvik, L. J., 1988. Availability of dissolved organic carbon for planktonic bacteria in oligotrophic lakes of differing humic content. Microb. Ecol. 16: 311–322.

    Article  CAS  Google Scholar 

  • Tranvik, L. J., 1990. Bacterioplankton growth on fractions of dissolved organic carbon of different molecular weights from humic and clear waters. Appl. envir. Microbiol. 56: 1672–1677.

    CAS  Google Scholar 

  • Tranvik, L. J., 1992. Allochthonous dissolved organic matter as an energy source for pelagic bacteria and the concept of microbial the loop. Hydrobiologia 229: 107–114.

    Article  CAS  Google Scholar 

  • Tranvik, L. & M. G. Höfle, 1987. Bacterial growth in mixed cultures on dissolved organic carbon from humic and clear waters. Appl. envir. Microbiol. 53: 482–488.

    CAS  Google Scholar 

  • Wetzel, R. G., 1983. Limnology, 2nd edition, W. B. Saunders Co., Philadelphia. 767 pp.

    Google Scholar 

  • Wood, E. D., F. A. J. Armstrong & F. A. Richards, 1967. Determination of nitrate in sea water by cadmium-copper reduction to nitrite. J. mar. biol. Ass. U.K. 47: 23–31.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

K. Salonen T. Kairesalo R. I. Jones

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Salonen, K. et al. (1992). Planktonic food chains of a highly humic lake. In: Salonen, K., Kairesalo, T., Jones, R.I. (eds) Dissolved Organic Matter in Lacustrine Ecosystems. Developments in Hydrobiology, vol 73. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-2474-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-2474-4_10

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-5092-0

  • Online ISBN: 978-94-011-2474-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics