Skip to main content

Fixing of the prosthesis to the skeletal part

  • Chapter
Bioceramics

Abstract

In many cases the functionality of a prosthesis depends on the stability of the bond established between the prosthesis and bone tissue. There are a variety of circumstances which can affect the relation between the stability of an implant and its liability to loosening. The interdependence between the biological and biomechanical factors that can lead to loosening is a subject which has been studied and summarized by Lee and Ling 1984 (Fig. 12.1). Of course, the problem of loosening is focused in the bone/implant interface area, because it is the progressive deterioration of this area which eventually results in loosening and mechanical failure of either the bone or the device.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  • Abercrombie M., Heaysman, J. E. M. and Pegrum, S. M. (1971) The locomotion of fibroblasts in culture, IV: Electron Microscopy of the leading lamella, Exp. Cell. Res., 67, 359–67.

    Article  CAS  Google Scholar 

  • Alacout, J. L., Assarane, J. and Trombe, J. C. (1984) Sur la fixation du titan par les minerals phosphates, C. R. Acad. Sc. Paris, 298, Serie II, 173–5.

    Google Scholar 

  • Albrektsson, T. and Linder, L. (1980) Proc. 1st Biomat. Congr., Baden (Vienna), Apr. 8–12, pp. 1–16.

    Google Scholar 

  • Anderson, J. M. and Green, D. (1980) Proc. 1st World Biomat. Congr., Baden (Vienna), 2.4.1.

    Google Scholar 

  • Aveyard, R. and Vincent, B. (1977) Liquid-liquid interfaces: in isolation and in interactions, in Progress in Surface Science (ed. S. G. Davidson), Vol. 8, Pergamon Press, Oxford, 59–102.

    Google Scholar 

  • Bassett, C. A. L. (1971) Biophysical principles affecting bone structure, in The Biochemistry and Physiology of Bone, (ed. G. M. Bourne), 2nd edn, Vol. III, Academic Press, NY and London, pp. 1–76.

    Google Scholar 

  • Bhaskar, S. N., Brady, J. M., Getter, L., et al. (1971) Biodegradable ceramic implants in bone, Oral. Surg., 32, 336.

    Article  CAS  Google Scholar 

  • Bell, G. H. (1956) Bone as a Mechanic Engineering Problem in the Biochemistry and Physiology of Bone, (ed G. H. Bourne) Academic Press, NY.

    Google Scholar 

  • Bell, G. H., Weir, J. B. de V. (1949) Medical Res. Council (Brit.) Memorandum No. 22.85.

    Google Scholar 

  • Breder, K. and Ritter, J. Private communication.

    Google Scholar 

  • Breder, K., de Portu, G., Ritter, J.E. and Dau Fabrische, D. (1988) Erosion damage and strength degradation of zirconiatoughened alumina, J. Am. Ceram. Soc., 71(9), 770–775.

    Article  CAS  Google Scholar 

  • Cameron, H. U., (1979) Evaluation of a biodegradable ceramic, Abstr. 25th Annual ORS Meeting, S. Francisco, p. 250.

    Google Scholar 

  • Cannas, M., Amedeo, M. R., Krajewski, A. and Ravaglioli, A. (1987) Biocompatibility of different bioactive glasses for coating metallic protheses in relation to cell adhesion mechanisms, Advances in Biomaterials, Vol. 7 (ed. A. Pizzaferrato, P. G. Marchett, A. Ravaglioli and A. J. C. Lee) Elsevier Science Publishers BV, Amsterdam, pp. 563. 567

    Google Scholar 

  • Clarke, W. J., Driskell, T. D., Hassler, C. R., et al. (1973) Calciumphosphate resorbable ceramics. A potential alternative to bone grafting, 511th General Meeting IADR, Washington DC, Book of Abstracts, p. 259.

    Google Scholar 

  • Coleman, D. L. and Andrade, J. D. (1980) Proc. 1st World Biomat. Congr., Baden (Vienna), 2.3.

    Google Scholar 

  • Colla, S., Stang, R. G., Miller, A. G., et al. (1979) Trans. 11th Int. Biomat. Symp. & 5th Meeting Am. Biomat. Soc., Vol. III, 32, Clemson University, SC, USA.

    Google Scholar 

  • Cook, S. D., Klawitter, J.J., Weinstein, A. M. and Das, S. (1979) Trans. 11th Int. Biomat. Symp. & 5th Meeting Am. Biomat. Soc., Vol III, 59, Clemson University, SC, USA.

    Google Scholar 

  • Cooke, F. W., Gratthick, G. E., Desai, V. H., Von Recum, A. F. and Park, J. B. (1980) Proc. 1st World Biomat. Congr., Baden (Vienna), 1–16.

    Google Scholar 

  • de Groot, K. (1983) Ceramics based on calciumphosphates, in Ceramics in Surgery (ed. P. Vincenzini) (Materials Science Monographs 17), Elsevier Science Publishers BV, PP. 79–90.

    Google Scholar 

  • De Groot, K. Private communication.

    Google Scholar 

  • De Portu, G. and Vincenzini, P. (1979) Young’s modulus - porosity relationship for alumina substrates, Ceramurgia International, 5, 165–67.

    Article  Google Scholar 

  • Dichiard, J. F. and Higham, P. A. (1987) Histological examination of the bone/metal interface in removed porous coated human protheses using a new processing method in Bio-materials Clinical Applications (ed. A. Pizzaferranto, P. G. Marchett, A. Ravaglioli, A. J. C. Lee) (Advances in Bio-materials 7) Elsevier Science Publ. p. 63.

    Google Scholar 

  • Dingeldein, E., Bergmann, P., Wahlig, H., Metallinos, A., Simane, Z. and Hermanek, P. (1980) Proc. 1st World Biomat. Congr., Baden (Vienna), 2.4.5.

    Google Scholar 

  • Downes, S., Di Silvio, L., Klein, C. P. A. T. and Kayser, M. V. (1991) Growth-hormone loaded bioactive ceramics, J. Mat. Sci. Med., 2, 176–80.

    Article  CAS  Google Scholar 

  • Driskell, T. D., Hassler, C. R. and McCoy, L. G. (1973) The significance of resorbable bioceramics in the repair of bone defects, Proc. 26th Meeting ACEMB.

    Google Scholar 

  • Ducheyne, P., Van Raedmonck, W., Heughebaert, J. C. and Heughebaert, M. (1986) Structural analysis of hydjroxyapatite coatings on titanium, Biomaterials, 7, 97–104.

    Article  CAS  Google Scholar 

  • Evans, F. G. and Lebow, M. (1952) Am. J. Surgery, 83, 326.

    Article  CAS  Google Scholar 

  • Fernandez-Fairen, M. and Vazquez, J. J. (1980) Vienna Proc.

    Google Scholar 

  • Fujiu, T. and Ohno, M. (1984), Difference of bond bonding behaviour among surface active glasses and sintered apatite, J. Bioron. Mat. Re., 18, 845–59.

    Article  CAS  Google Scholar 

  • Gregoire, M., Orly, I., Menanteau, J., et al. (1988) In vitro interactions between calcium phosphate biomaterials and human fibroblastic cells, in Implant Naterials in Biofunction (ed. G. Putter, G. L. Lange, K. de Groot A. J. C. and Lee), (Advances in Biomaterials Vol. 8), Elsevier Science publishers BV, Amsterdam, I, pp. 211–14,

    Google Scholar 

  • Gregoire, M., Orly, I. Menanteau, J., et al. (1988) In vitro interactions between calcium phosphate biomaterials and human fibroblastic cells, in Implant Naterials in Biofunction (ed. G. Putter, G. L. Lange, K. de Groot A. J. C. and Lee), (Advances in Biomaterials Vol. 8), Elsevier Science publishers BV, Amsterdam, II, pp. 215–20.

    Google Scholar 

  • Grenoble, D. G. and Voss, R. J. (1978) Analysis of five year of study of vitreous carbon endosseous implants in humans, Odontologia Nova, 1.

    Google Scholar 

  • Griss, P., Greenspan, D. C, Heimke, G., et al. (1976) in J. Biomed. Mat. Res. Symp., 7, 511–18.

    Article  Google Scholar 

  • Griss, P., Werner, E., Heimke, G. and Buchinger, R. (1977) Vergleichende experimentelle untersuchungen an bioglas (L. L. Hench), Al2O3-keramik und mit mod. bioglas beschichteter Al203-keramic, Arch. Orthop. Unfall. Chir., 90, 15.

    Article  CAS  Google Scholar 

  • Gross, U., Schmitz, H. J., Kinne, R. et al. (1987) Tissue or cell culture versus in vivo testing of surface-reactive biomaterials in Biomaterials and Clinical Applications (ed. A. Pizzoferrato, P. G. Marchetti, A. Ravaglioli and A. J. C. Lee) (Advances in Biomaterials Vol. 7), Elsevier Science Publishers BV, Amsterdam, pp. 547–56.

    Google Scholar 

  • Heimke, G. (1987) Ceramics for osseo-integrated implants, Adv. Ceram. Mat., 4, 764–70.

    Google Scholar 

  • Hench, L. L. (1987), Cementless fixation, in Biomaterials and Clinical Applications (ed. A. Pizzoferrato, P. G. Marchetti, A. Ravaglioli and A. J. C. Lee), (Advances in Biomaterials Vol. 7), Elsevier Science Publishers BV, Amsterdam, pp. 23–34.

    Google Scholar 

  • Hench, L. L. (1973) Ceramics, glasses and composites in Medicine, Medical Instrumentation, 7(2), 136.

    CAS  Google Scholar 

  • Hench, L. L. (1977) Physiological factors at bioceramic interfaces in Surface and Interfaces of Glass and Ceramics, (ed. V. D. Frechet) Plenum Publ., NY.

    Google Scholar 

  • Hench, L. L., Pantano Jr., C. G., Busceni, P. J. and Greenspan, D. C. (1977) J. Biomed. Mat. Res., 11, 267–82.

    Article  CAS  Google Scholar 

  • Hench, L. L- and Paschall, H, A. (1969) Histo-chemical effects at a biomaterials interface, J. Biomed. Mat. Res. Symp. in Prostheses and Tissue: the Interface Problem, (ed. S. Hulbert).

    Google Scholar 

  • Hench, L. L., Paschall, H. A., Allen, W. C. and Piotrowski, G. (1972) An investigation of bonding mechanisms at the interface of a prosthetic material, Mep. N. 3, U.S. Army Med. E. and D. Cont., No. DA-DA 17-70-COOO1.

    Google Scholar 

  • Hench, L. L., Splinter, R. J., Allen, W. C. and Greenlee Jr., T. K. (1972) in J. Biomed. Symp. 2, Interscience, NY, pp. 117–143.

    Google Scholar 

  • Higman, P. (1988) Analisi istologica di protesi rimosse a rivestimento poroso, Proc. of 1st Conf. of the SIB (Italian Soc. of Biomaterials), Trieste, Italy.

    Google Scholar 

  • Hubbard, W. (1974) Physiological calciumphosphate as orthopaedic implant material, DISS Abstr. Int., 35.

    Google Scholar 

  • Hynes, R. O. (1986) La fibronectina, Le Scienze (Italian edition of Scientific American), XXXVII, 24–33.

    Google Scholar 

  • Jarch, M. (1983) Hydxoxylapatite as a hard tissue implant, in Orthopaedic Ceramic Implants Vol. 3, (ed. H. Hoonishi and Y. Ooi), Japan Soc. of Orthopaedic Ceramic Implants, Tokyo, pp. 1–9.

    Google Scholar 

  • Jones, S.J. and Boyde, A. (1977) The migration of osteoblasts, Cell. Tiss. Res., 184, 179–93.

    CAS  Google Scholar 

  • Kendall, E. G. (1965) Intermetallic materials: Carbides, basides, bitrides and silicides in Ceramics for Advanced Technologies (ed. J. E. Hove W. C. and Riley) University of California Engineering and Physical Sciences Extension Service, John Wiley, NY, chapter 5, pp. 143–83.

    Google Scholar 

  • Klomp, J. T. (1971) Bonding of metals to ceramics and glasses, Am. Ceram. Soc. Bull., 51(9), 683–88.

    Google Scholar 

  • Krajewski, A., Ravaglioli, A., Mongiorgi, R. and Moroni, A. (1988) Mineralization and calcium fixation within a porous apatitic ceramic material after implantation in the femur of rabbits, J. of Biomed. Mat. Res., 22, 6, 446–457

    Google Scholar 

  • Kurokawa, H., Kajiyama, M., Nomura, N., Rin, K., et al. (1986) A fundamental study on the application of calcium phosphate ceramics in bone defects J. Kyushu Dent. Soc., 40(3), 686–93.

    CAS  Google Scholar 

  • Lee, A. J. C. and Ling, R. S. M. (1984) Loosening in Complication of Total Hip Replacement (ed. R. S. M. Ling) Churchill-Livingstone, NY, chapter 9, pp. 110–45.

    Google Scholar 

  • Levin, M. P., Getter, L., Cutright, D. E. and Bhaskar, S. N. (1974) Biodegradable ceramic in Periodontal defects, Oral Surg., 38, 344.

    Article  CAS  Google Scholar 

  • Levin, M. P., Getter, L. and Cutright, D. E. (1975) A comparison of iliac marrow and biodegradable ceramic in periodontal defects, J. Biomed. Mat. Res., 9, 183.

    Article  CAS  Google Scholar 

  • Lindner, J. (1977) Bone Healing, Clin. Plast. Surg., 4(3), 425–37.

    CAS  Google Scholar 

  • Mittelmeier, H. J., Harms, J. and Hamser, U. (1980) Proc. 1st World Biomat. Congr., Baden (Vienna), 1.18.

    Google Scholar 

  • Nonma, H. (1985) The hydration of tricalcium phosphate, Proc. of the 1st Congress of Apatite, Tokyo, 15.

    Google Scholar 

  • Morral F. R. (1966) Cobalt alloys as implants in humans, J. of Materials, 384.

    Google Scholar 

  • Mors, W. A. and Kaminiski, E. J. (1975) Osteogenic replacement of tricalciumphosphate ceramic implants in the dog palate, Archs Oral Biol., 20, 365.

    Article  CAS  Google Scholar 

  • Mors, W. A., Kaminiski, E. J., Rosenstein, S. and Perry, H. T. (1974) Resorbable ceramic implants in surgically created cleft palates in dogs, J. Dent. Res., 53 (Abstr.), 129.

    Google Scholar 

  • Mutschelknauss, E. and Dörre, E. (1978) Enossale Stiftimplantate aus alurninium-oxidkeramik, in Zahnärztliche Praxis, Helf 9.

    Google Scholar 

  • Nakamura, T., Yamauro, T., Higashi, S., et al. (1983) in The Improvement of Apatite-Containing Glass-Ceramic and the Bonding Capacity to Bone Tissues (ed. Y. Ooi and H. Hoonishi) Japan. Soc. of Orthopedic Ceramics Implants, Tokyo, pp. 85–90.

    Google Scholar 

  • Nery, E. B., Lynch, K. L., Hirthe, W. M. and Müller, K. H. (1975) Bioceramic implants in surgically produced infrebony defects, J. Periodontal, 46, 328.

    CAS  Google Scholar 

  • Nilles, J. L. and Lapitskiy, M. (1974) Biomedical investigations of bone-porous carbon and metal interfaces, J. Biomed. Mat. Res. Symposium, No 5, Part 1, 209–217.

    Google Scholar 

  • Pantano, C. G. Clark Jr, A. E. and Hench, L. L. (1974), J. Amer. Ceram. Soc., 57(9), 412–13.

    Article  CAS  Google Scholar 

  • Park, J. B. and Turner, R. C. (1980) Proc 1st World Biomat. Congr., Baden (Vienna), 1.15.

    Google Scholar 

  • Pilla, A. A. (1979) Electrochemical information transfer and its possible role in the control of cell function in Electrical Properties of Bone and Cartilage (ed. C. T. Brigton and S. R. Pollack) Grune and Stratton, NY, pp. 455–89.

    Google Scholar 

  • Ravaglioli, A., Krajewski, A., Zini, Q. and Venturi, R. (1986) Short and long range silicate release from dopend bioglass 199 medium, Biomaterials, 7, 76–8.

    Article  CAS  Google Scholar 

  • Renooij, W., Hoogendoora, H. A., Visser, W. J., et al. (1986) Bioresorption of ceramic strontium 85-labeled calcium phosphate implants in dog femora, Clin. Orthop., 197, 272–85.

    Google Scholar 

  • Richter-Scarpelli, H. (1968) in Biological and Pathological Aspects in the Cell Membrane (ed. D. Champman) Acc. Press, NY.

    Google Scholar 

  • Seidel H., Eggert E. and Pietsch (1980) 1st World Biomat. Congr., Baden (Vienna), Book of Abstracts 2.4.2.

    Google Scholar 

  • Shelton, R. M., Whyte, I. M. and Davies, J. E. (1987) Interaction between primary bone cell cultures and biomaterials, Part 4: Colonization of charged polymer surfaces, in Biomaterial and Clinical Applications (eds A. Pizzoferrato et al.), Elsevier Science Publishers, Amsterdam, pp. 597–602.

    Google Scholar 

  • Shlomo Nir (1977) Van der Waals interactions between surfaces of biological interest, in Progress in Surface Science (ed. S. G. Davidson), Vol. 8, Pergamon Press, Oxford, 1–58.

    Google Scholar 

  • Stumm, W. and Leckie, J. D. (1970) Advances in Water Pollution Research, Vol. 2, 111, 26/1, Pergammon Press.

    Google Scholar 

  • Tarrant, S. F. and Davies, J. E. (1987) Interactions between primary bone cell cultures and biomaterials, in Biomaterials and Clinical Applications (ed. A. Pizzoferrato, P. G. Marchetti, A. Ravaglioli and A. J. C. Lee) (Advances in Biomaterials Vol. 7); part I: Method; the in vitro and in vivo stages, pp. 579–84; Elsevier Science Publishers BV, Amsterdam.

    Google Scholar 

  • Tarrant, S. F. and Davies, J. E. (1987) Interactions between primary bone cell cultures and biomaterials, in Biomaterials and Clinical Applications (ed. A. Pizzoferrato, P. G. Marchetti, A. Ravaglioli and A. J. C. Lee) (Advances in Biomaterials Vol. 7); part II: Osteoblast behaviour, pp. 585–90; Elsevier Science Publishers BV, Amsterdam.

    Google Scholar 

  • Tarrant, S. F. and Davies, J. E. (1987) Interactions between primary bone cell cultures and biomaterials, in Biomaterials and Clinical Applications (ed. A. Pizzoferrato, P. G. Marchetti, A. Ravaglioli and A. J. C. Lee) (Advances in Biomaterials Vol. 7); part III: A comparison of dense and macroporous hydroxylapatite, pp. 591–96; Elsevier Science Publishers BV, Amsterdam.

    Google Scholar 

  • Tennery, V. J. and Driskell, T. D. (1973) Some studies of bone ceramics interfaces in calciumphosphate resorbable ceramics, Ceramic Bull. Sec. Symposium au Biomaterials, 430.

    Google Scholar 

  • Thomas, K. A., Kay, J. F., Cook, S. D. and Jatcho, M. (1987) The effect of surface macrotexture and hydroxylapatite coating on the mechanical strength and histologic profiles of titanium implant materials, J. Biom. Mat. Res., 21, 1395–1414.

    Article  CAS  Google Scholar 

  • Thull, R. and Schaldach, M. (1976) Advances in artificial hip and knee joint technology in Engineering in Medicine 2 (ed. M. Schaldach and D. Holmann with R. Thull and F. Hein) Springer-Verlag, Berlin, p. 251.

    Google Scholar 

  • van Blitterswijk, C. A., Grote, J. J., Kuypers, W., Blok-Van Hoek, C. J. G. and Daems, W. T. (1985) Bioreactions at the tissue/hydroxyapatite interface, Biomaterials, 6, 243–51.

    Article  Google Scholar 

  • Veerman, E. C. I., Suppers, R. J. F., Klein, C. P. A. T., et al. (1983) Immunochemical identification of the protein layers adsorbed onto hydroxyapatite after in vivo and in vitro incubation with serum and plasma in Implant Materials in Biofunction, (ed. G. Putter, G. L. de Lange, K. de Groot and A. J. C. Lee) (Advances in Biomaterials Vol. 8), Elsevier Science Publishers BV, Amsterdam, pp. 331–35.

    Google Scholar 

  • Veerman, E. C. I., Suppers, R. J. F., Klein, C. P. A. T., et al. (1988) Comparison of in vivo and in vitro protein adsorption to bone substitutes, in Implant Materials in Biofunction, (ed. G. Putter, G. L. de Lange, K. de Groot and A. J. C. Lee) (Advances in Biomaterials Vol. 8), Elsevier Science Publishers BV, Amsterdam, pp. 337–42.

    Google Scholar 

  • Walker, M. M. and Katz, J. L. (1980) 1st World Biomat. Congr., Final programme - Book of Abstracts, Baden (Vienna).

    Google Scholar 

  • Weiss, L. (1970) A biophysical consideration of cell contact phenomena, Adhesion in Biological Systems (ed. R. S. Manly) Academic Press, NY.

    Google Scholar 

  • Wold, F. (1971) Macromokcules: Structure and Function, Prentice Hall, Englerwood Cliff, NJ, chapter 9.

    Google Scholar 

  • Yamamuro, T., Nakamura, T., Higashi, S. et al. (1983) Artificial bone for use as a bone prosthesis, Prog. Artif., 810–13.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Ravaglioli, A., Krajewski, A. (1992). Fixing of the prosthesis to the skeletal part. In: Bioceramics. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-2336-5_12

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-2336-5_12

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-5032-6

  • Online ISBN: 978-94-011-2336-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics