Skip to main content

Modification of Surfaces for Promoting Cell Immobilization

  • Chapter
Biofilms — Science and Technology

Part of the book series: NATO ASI Series ((NSSE,volume 223))

Abstract

Biofilms serve beneficial purposes in the natural environment and in some modulated or engineered biological systems. For example, biofilms are responsible for the removal of dissolved and particulate contaminants in natural streams and in waste water treatment plants. Biofilms in natural water, called mats, frequently determine water quality by influencing dissolved oxygen content and by serving as a sink for toxic and/or hazardous materials. These mats may play a significant role in the cycling of chemical elements. Biofilm reactors are also used in some common fermentation processes, eg, the “quick” vinegar process (Characklis and Marshall, 1990).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 429.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 549.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Asther, M., Bellon-Fontaine, M.N., Capdeville, C. and Corrieu, G. (1990), ‘A thermodynamic model to predict Phanerochaete chrysosporium INA-12 adhesion to various solid carriers in relation to lignin peroxidase production’, Biotechnol. Bioeng., 35, 477–482.

    Article  CAS  Google Scholar 

  • Bar, R., Gainer, J.L. and Kirwan, D.J. (1986), ‘Immobilization of Acetobacter aceti on cellulose ion exchangers: Adsorption isotherms’, Biotechnol. Bioeng., 28, 1166–1171.

    Article  CAS  Google Scholar 

  • Beech, I.B. and Gaylarde, C.C. (1989), ‘Adhesion of Desulfovibrio desulfuricans and Pseudomonas fluorescens to mild steel surfaces’, J. Appl. Bacteriol., 67, 201–207.

    Article  Google Scholar 

  • Büchs, J., Mozes, N., Wandrey, C. and Rouxhet, P.G. (1988), ‘Cell adsorption control by culture conditions. Influence of phosphate on surface properties, flocculation and adsorption behaviour of Corynebacterium glutamicum,’ Appl. Microbiol. Biotechnol., 29, 119–128.

    Article  Google Scholar 

  • Busscher, H.J., Weerkamp, A.H., Van Der Mei, H.C., Van Steenberghe, D., Quirynen, M., Pratt, I.H., Marechal, M. and Rouxhet, P.G. (1989), ‘Physico-chemical properties of oral streptococcal cell surfaces and their relation with adhesion to solid substrata in vitro and in vivo’, Colloids and Surfaces, 42, 345–353.

    CAS  Google Scholar 

  • Champluvier, B., Marchal, F. and Rouxhet, P.G. (1989a), ‘Immobilization of lactase in yeast cells retained in a glass wool matrix’, Enzyme Microb. Technol., 11, 422–430.

    Article  CAS  Google Scholar 

  • Champluvier, B., Francart, B. and Rouxhet, P.G. (1989b), ‘Co-immobilization by adhesion of ß-galactosidase in nonviable cells of Kluyveromyces lactis with Klebsiella oxytoca: conversion of lactose into 2,3-butanediol’, Biotechnol. Bioeng., 34, 844–853.

    Article  CAS  Google Scholar 

  • Changui, C., Doren, A., Stone W.E.E., Mozes, N. and Rouxhet, P. (1987), ‘Surface properties of polycarbonate and promotion of yeast cells adhesion’, J. Chim. Phys., 84, 276–281.

    Google Scholar 

  • Characklis, W.G., ‘Biofilm processes’, in: W.G. Characklis and K.C. Marshall (eds.), Biofilms, John Wiley & Sons, Inc., New York, Chichester, Brisbane, Toronto, Singapore, ch. 7, pp. 195–231.

    Google Scholar 

  • Characklis, W.G., Marshall, K.C. (1990), ‘Biofilms: A basis for an interdiscipknary approach’, in: W.G. Characklis and K.C. Marshall (eds.), Biofilms, John Wiley & Sons, Inc., New York, Chichester, Brisbane, Toronto, Singapore, ch. 1, pp. 3–15.

    Google Scholar 

  • Dewez, J.L., Doren, A., Schneider, Y.J., Legras, R. and Rouxhet, P.G. (1991), ‘Surface study of new microporous polymeric membranes used as a substratum for animal cell culture’, in: P. Grange and B. Delmon (eds.), Interfaces in new materials, Elsevier Applied Science, London and New York, pp. 84– 94.

    Chapter  Google Scholar 

  • Doren, A., Lemaître, J. and Rouxhet, P.G. (1989), ‘Determination of the zeta potential of macroscopic specimens using microelectrophoresis’, J. Colloid Interface Sci., 130, 146–156.

    Article  CAS  Google Scholar 

  • D’Souza, S.F., Melo, J.S., Deshpande, A. and Nadkarni, G.B. (1986), ‘Immobilization of yeast cells by adhesion to glass surface using polyethylenimine’, Biotechnol. Lett., 8, 643–648.

    Article  Google Scholar 

  • Durand, G. and Navarro, J.M. (1978), ‘Immobilized microbial cells’, Process Biochemistry, September 1978, 14–23.

    Google Scholar 

  • Fregard, F. (1991), ‘Role des interactions hydrophobes et électrostatiques dans l’adhésion de bactéries méthanogènes aux matériaux de faible énergie de surface’, PhD Thesis, Université des Sciences et Techniques de Lille I (France).

    Google Scholar 

  • Hattori, R. and Hattori, T. (1985), ‘Adsorptive phenomena involving bacterial cells and an anion exchange resin’, J. Gen. Appl. Microbiol., 31, 147–163.

    Article  CAS  Google Scholar 

  • Hattori, S., Andrade, J.D., Hibbs, J.B., Gregonis, D.E. and King, R.N. (1985), ‘Fibroblast cell proliferation on charged hydroxyethyl methacrylate copolymers’, J. Colloid Interface Sci., 104, 72–78.

    Article  CAS  Google Scholar 

  • Hermesse, M.P., Dereppe, C., Bartholomé, Y. and Rouxhet, P.G. (1988), ‘Immobilization of Acetobacter aceti by adhesion’, Can. J. Microbiol., 34, 638–644.

    Article  CAS  Google Scholar 

  • Kamath, N. and D’Souza S.F. (1991), ‘Immobilization of ureolytic cells through flocculation and adhesion on cotton cloth using polyethylenimine’, Enzyme Microb. Technol., 13, 935–938.

    Article  CAS  Google Scholar 

  • Kayem G.J., Rouxhet P.G. (1983), ‘Adsorption of colloidal hydrous alumina on yeast cells’, J. Chem. Soc., Faraday Trans., 79, 561–569.

    Article  CAS  Google Scholar 

  • Kirkpatrick, C.J., Mueller-Schulte, D., Royé, M., Hollweg, G., Gossen, C., Richter, H. and Mittermayer, C., ’Surface modification of polymer to permit endothelial cell growth’, Cells and Materials, 1, 93–108.

    Google Scholar 

  • Krekeler, C., Ziehr, H. and Klein, J. (1991), ‘Influence of physicochemical bacterial surface properties on adsorption to inorganic porous supports’, Appl. Microbiol. Biotechnol., 35, 484–490.

    Article  CAS  Google Scholar 

  • Matijevic, E. and Scheiner, P. (1978), ‘Ferric hydrous oxide sols. III. Preparation of uniform particles by hydrolysis of Fe(III)-chloride, -nitrate, and -prechlorate solutions’, J. Colloid Interface Sci., 63, 509–524.

    Article  CAS  Google Scholar 

  • Messing, R.A. and Oppermann, R.A. (1979), ‘Pore dimensions for accumulating biomass. I. Microbes that reproduce by fission or by budding’, Biotechnol.Bioeng., 21, 49–58.

    Article  Google Scholar 

  • Mozes, N. and Rouxhet, P.G. (1984), ‘Dehydrogenation of cortisol by Arthrobacter simplex immobilized as supported monolayer’, Enzyme Microb. Technol., 6, 497–502.

    Article  CAS  Google Scholar 

  • Mozes, N. and Rouxhet, P.G. (1985), ‘Metabollc activity of yeast immobilized as supported monolayer’, Appl. Microbiol Biotechnol., 22, 92–97.

    Article  CAS  Google Scholar 

  • Mozes, N., Marchal, F., Hermesse, M.P., Van Haecht, J.L., Reuliaux, L., Léonard, A.J. and Rouxhet, P.G. (1987), ‘Immobilization of microorganisms by adhesion: Interplay of electrostatic and nonelectrostatic interactions’, Biotechnol. Bioeng., 30, 439–450.

    Article  CAS  Google Scholar 

  • Navarro, J.M. and Durand, G. (1977), ‘Modification of yeast metabolism by immobilization onto porous glass’, European J. Appl. Microbiol., 4, 243–254.

    Article  CAS  Google Scholar 

  • Opara, C.C. and Mann, J. (1988), ‘Development of ultraporous fired bricks as support for yeast cell immobilization’, Biotechnol. Biœng., 31, 470–475.

    Article  CAS  Google Scholar 

  • Rouxhet, P.G. and Mozes, N. (1990a), ‘Physical chemistry of the interface between attached microorganisms and their support’, Wat. Sci. Tech., 22, 1–16.

    Article  CAS  Google Scholar 

  • Rouxhet, P.G. and Mozes, N. (1990b), ‘The micro-environment of immobilized cells: critical assessment of the influence of surfaces and local concentrations’, in Physiology of Immobilized Cells (J.A.M. de Bont, J. Visser, B. Mattiasson and J. Trampers, eds.), Proc. Int. Symp. Wageningen, The Netherlands, 10–13 December 1989, Elsevier Science Publishers, Amsterdam, pp. 343–354.

    Google Scholar 

  • Rouxhet, P.G. and Genet, J.G. (1991), ‘Chemical composition of the microbial cell surface by X-ray photoelectron spectroscopy’, in: N. Mozes, P.S. Handley, H.J. Busscher and P.G. Rouxhet (eds.), Microbial cell surface analysis: structural and physico-chemical methods, VCH, New York, ch.8 pp.173–220.

    Google Scholar 

  • Rouxhet, P.G., Mozes, N., Hermesse, M.P. and Matta-Ammouri, G. (1987), ‘Immobilization of microorganisms by adhesion to a support: influence of physico-chemical factors’, in Proc. 4th European congress on Biotechnol. (O.M. Neijssel, R.R. van der Meer and K.Ch.A.M. Luyben, eds.), Elsevier Science Publishers, Amsterdam, pp. 193–196.

    Google Scholar 

  • Schakenraad, J.M. and Busscher H.J. (1989), ‘Cell-polymer interactions: The influence of protein adsorption’, Colloids and Surfaces, 42, 331–343.

    CAS  Google Scholar 

  • Van Wagenen, R.A. and Andrade, J.D. (1980), ‘Flat plate streaming potential investigations: Hydrodynamics and electrokinetic equivalency’, J. Colloid Interface Sci., 76, 305–314

    Article  Google Scholar 

  • van Loosdrecht, M.C.M., Lyklema, J., Norde, W., Schraa, G. and Zehnder, A.J.B. (1987a), ‘The role of bacterial cell wall hydrophobicity in adhesion’, Appl. Environ. Microbiol., 53, 1893–1897.

    Google Scholar 

  • van Loosdrecht, M.C.M., Lyklema, J., Norde, W., Schraa, G.. and Zehnder, A.J.B. (1987b), ‘Tilectrophoretic mobility and hydrophobicity measurements as a measure to predict the initial steps of bacterial adhesion’, Appl. Environ. Microbiol., 53, 1899–1902.

    Google Scholar 

  • Verrier, D., Mortier, B. and Albagnac G. (1987), ‘Initial adhesion of methanogenic bacteria to polymers’, Biotechnol. Lett., 9 (10), 735–740.

    Article  CAS  Google Scholar 

  • Wood, J.M. (1980), ‘The interaction of micro-organisms with ion exchange resins’, in: R.C.W. Berkeley, J.M. Lynch, J. Melling, P.R. Rutter and B. Vincent (eds.), Microbial adhesion to surfaces, Ellis Horwood Ltd., Chichester, ch. 8, pp. 163–185.

    Google Scholar 

  • Zobell, C.E. and Allen E.C. (1935), ‘The significance of marine bacteria in the fouling of submerged surfaces’, J. Bacteriol., 20, 239–251.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Mozes, N., Rouxhet, P.G. (1992). Modification of Surfaces for Promoting Cell Immobilization. In: Melo, L.F., Bott, T.R., Fletcher, M., Capdeville, B. (eds) Biofilms — Science and Technology. NATO ASI Series, vol 223. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-1824-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-1824-8_7

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4805-7

  • Online ISBN: 978-94-011-1824-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics