Skip to main content

Potential of plant-derived genes in the genetic manipulation of crops for insect resistance

  • Conference paper
Proceedings of the 8th International Symposium on Insect-Plant Relationships

Part of the book series: Series Entomologica ((SENT,volume 49))

Abstract

The plant kingdom provides a rich and diverse source of secondary compounds. A protective role against various pests, pathogens and competitors for many of these has been established and in recent years the utilisation of such compounds in crop protection, either by conventional plant breeding or by genetic engineering has been, and is being, investigated (Gatehouse et al., 1990).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Altabella, T. & M.J. Chrispeels (1990). Tobacco plants transformed with the bean aai gene express an inhibitor of insect a-amylase in their seeds. Plant Physiol. 93: 805–810.

    Article  PubMed  CAS  Google Scholar 

  • Applebaum, S.W. (1964). Physiological aspects of host specificity in the Bruchidae - I. General considerations of developmental compatibility. J. Insect Physiol. 10: 783–788.

    Article  CAS  Google Scholar 

  • Begbie, R. & T.P. King (1985). The interaction of dietary lectin with porcine small intestine and the production of lectin-specific antibodies. In: T.C. Bog-Hansen & J. Breborowicz (eds), Lectins, Vol. IV, pp. 15–17. Berlin: Walter de Gruyter and Co.

    Google Scholar 

  • Birk, Y., A. Gertler & S. Khalef (1963). Separation of a Tribolium-protease inhibitor from soybeans on a calcium phosphate column. Biochim. Biophys. Acta 67: 326–328.

    Article  PubMed  CAS  Google Scholar 

  • Boulter, D. & A.M.R. Gatehouse (1986). Isolation of genes involved in pest and disease resistance. In: E. Magnien (ed.), Biomolecular Engineering in the European Community, pp. 715–725. Dordrecht: Martinus Nijhoff.

    Google Scholar 

  • Boulter, D., G.A. Edwards, A.M.R. Gatehouse, J.A. Gatehouse & V.A. Hilder (1990). Additive protective effects of incorporating two different higher plant derived insect resistance genes in transgenic tobacco plants. Crop Protection 9: 351–354.

    Article  Google Scholar 

  • Broadway, R.M. & S.S. Duffy (1986). Plant proteinase inhibitors: mechanism of action and effect on the growth and digestive physiology of larval Heliothis zea and Spodoptera exigua. J. Insect Physiol. 32: 827–833.

    Article  CAS  Google Scholar 

  • Broadway, R.M., S.S. Duffey, G. Pearce & C.A. Ryan (1986). Plant proteinase inhibitors: A defense against herbivorous insects? Entomol. exp. appl. 41: 33–38.

    Article  CAS  Google Scholar 

  • Brown, W.E., K. Takio, K. Titani & C.A. Ryan (1985). Wound-induced trypsin inhibitor in alfalfa leaves: identity as a members of the Bowman-Birk inhibitor family. Biochemistry 24: 2105–2108.

    Article  PubMed  CAS  Google Scholar 

  • Burgess, E.P.J., P.S. Stevens, G.K. Keen, W.A. Laing & J.T. Christeller (1991). Effects of protease inhibitors and dietary protein level on the black field cricket Teleogryllus commodus. Entomol. exp. appl. 61: 123–130.

    Article  CAS  Google Scholar 

  • Cheung, A.Y., L. Gogorad, M. van Montagu & J. Schell (1988). Relocating a gene for herbicide tolerance: a chloroplast gene is converted into a nuclear gene. Proc. Natl Acad. Sci. USA 85: 391–395.

    Article  PubMed  CAS  Google Scholar 

  • Christeller, J.T. & B.D. Shaw (1989). The interaction of a range of serine proteinase inhibitors with bovine trypsin and Costelytra zealandica trypsin. Insect Biochem. 19: 233–239.

    Article  CAS  Google Scholar 

  • Czapla, T.H. & B.A. Lang (1992). Effect of plant lectins on the larval development of European corn borer (Lepidoptera: Pyralidae) and Southern corn rootworm (Coleoptera: Chrysomelidae). J. Econ. Entomol. (in press).

    Google Scholar 

  • De Oliveira, J.T.A. (1986). Seed lectins; the effects of dietary Phaseolus vulgaris lectin on the general metabolism of monogastric animals. PhD dissertation, Aberdeen University.

    Google Scholar 

  • Edwards, G.A. (1988). Plant transformation using an Agrobacterium tumefaciens Ti-plasmid vector system. PhD dissertation, Durham University.

    Google Scholar 

  • Ellis, J.R., A.H. Shirsat, A. Hepher, J.N. Yarwood, J.A. Gatehouse, R.R.D. Croy & D. Boulter (1988). Tissue specific expression of a pea legumin gene in seeds of Nicotiana plumbaginifolia. Plant Mol. Biol. 10: 203–214.

    Article  CAS  Google Scholar 

  • Evans, R.J., A. Pusztai, W.B. Watt & D.H. Bauer (1973). Isolation and properties of protein fractions from navy beans (Phaseolus vulgaris) which inhibit growth of rats. Biochim. Biophys. Acta. 303: 175–184.

    Article  PubMed  CAS  Google Scholar 

  • Farmer, E.E. & C.A. Ryan (1992). Octadecanoid precursors of jasmonic acid activate the synthesis of wound-inducible proteinase inhibitors. Plant Cell 4: 129–134.

    PubMed  CAS  Google Scholar 

  • Feeny, P.P. (1976). Plant apparency and chemical defence. Rec. Adv. Phytochem. 10 1–40.

    CAS  Google Scholar 

  • Gatehouse, A.M.R. & D. Boulter (1983). Assessment of the anti-metabolic effects of trypsin inhibitors from cowpea (Vigna unguiculata) and other legumes on development of the bruchid beetle Callosobruchus maculatus, J. Sci. Food Agric. 34: 345–350.

    Article  CAS  Google Scholar 

  • Gatehouse, A.M.R. & V.A. Hilder (1988). Introduction of genes conferring insect resistance. In: Proceedings of Brighton Crop Protection Conference, Vol. 3, pp. 1234–1254. Suffolk UK: Lavenham Press Ltd.

    Google Scholar 

  • Gatehouse, A.M.R., J.A. Gatehouse, P. Dobie, A.M. Kilminster & D. Boulter (1979).Biochemical basis of insect resistance in Vigna unguiculata, J. Sci. Food Agric. 30: 948–958.

    Article  CAS  Google Scholar 

  • Gatehouse, A.M.R., J.A. Gatehouse & D. Boulter (1980). Isolation and characterisation of trypsin inhibitors from cowpea. Phytochemistry 19: 751–756.

    Article  CAS  Google Scholar 

  • Gatehouse, A.M.R., F.M. Dewey, J. Dove, K.A. Fenton & A. Pusztai (1984). Effect of seed lectin from Phaeolus vulgaris on the development of larvae of Callosobruchus maculatus; mechanism of toxicity, J. Sci. Food Agric. 35: 373–380.

    Article  CAS  Google Scholar 

  • Gatehouse, A.M.R., S.J. Shackley, K.A. Fenton, J. Bryden & A. Pusztai (1989). Mechanism of seed lectin tolerance by a major insect storage pest of Phaseolus vulgaris, Acanthoscelides obtectus, J. Sci. Food Agric. 47: 269–280.

    Article  CAS  Google Scholar 

  • Gatehouse, A.M.R., H.B. Minney, P. Dobie & V.A. Hilder (1990). Biochemical resistance to bruchid attack in legumes; investigation and exploitation. In: K. Fujii, A.M.R. Gatehouse, C.D. Johnson, R. Mitchel & T. Yoshida (eds), Bruchids and Legumes: Economics, Ecology and Coevolution, pp. 241–256. Dordrecht: Kluwer Academic Publishers.

    Chapter  Google Scholar 

  • Gatehouse, J.A., V.A. Hilder & A.M.R. Gatehouse (1991a). Genetic engineering of plants for insect resistance. In: D. Grierson (ed.), Plant Genetic Engineering (Plant Biotechnology Series, Vol. 1), pp. 105–135. London: Blackie & Son; New York: Chapman & Hall.

    Google Scholar 

  • Gatehouse, A.M.R., D.S. Howe, J.E. Hemming, V.A. Hilder & J.A. Gatehouse (1991b). Biochemical basis of insect resistance in winged bean seeds (Psophocarpus tetragonolobus) seeds. J. Sci. Food Agric. 55: 63–74.

    Article  CAS  Google Scholar 

  • Graham, J.S., G. Hall, G. Pearce & C.A. Ryan (1986). Regulation of synthesis of proteinase inhibitors I and II mRNAs in leaves of wounded tomato plants. Planta 169: 399–405.

    Article  CAS  Google Scholar 

  • Green, T.R. & C.A. Ryan (1972). Wound-induced proteinase inhibitor in plant leaves: a possible defense mechanism asgainst insects. Science 175: 776-777.

    Article  PubMed  CAS  Google Scholar 

  • Heinrichs, E.A. & O. Mochida (1983). From secondary to major pest status: The case of insecticide-induced rice brown planthopper,Nilaparvata lugens resurgence. Proc. XV Pacific Science Congress, New Zealand.

    Google Scholar 

  • Higuchi, M., I. Tsuchiga & K. Iwai (1984). Growth inhibition and small intestinal lessions in rats after feeding with isolated winged bean lectin. Agric. Biol. Chem. 48: 695–701.

    Article  CAS  Google Scholar 

  • Hilder, V.A. & A.M.R Gatehouse (1990). In: G.W. Lycett& D. Grierson (eds), Genetic Engineering of Crop Plants, pp. 51–66. London: Butterworths.

    Google Scholar 

  • Hilder, V.A. A.M.R. Gatehouse (1991). Phenotypic cost to plants of an extra gene. Transgenic Res. 1: 54–60.

    Article  CAS  Google Scholar 

  • Hilder, V.A., A.M.R. Gatehouse, S.E. Sheerman, R.F. Barker & D. Boulter (1987). A novel mechanism of insect resistance engineered into tobacco. Nature 330: 160–163.

    Article  CAS  Google Scholar 

  • Hilder, V.A., R.F. Barker, R.A. Samour, A.M.R. Gatehouse, J.A. Gatehouse & D. Boulter (1989). Protein and cDNA sequences of Bowman-Birk protease inhibitors from the cowpea (Vigna unguiculata Walp), Plant Mol. Biol. 13: 701–710.

    Article  PubMed  CAS  Google Scholar 

  • Hilder, V.A., A.M.R. Gatehouse & D. Boulter (1991). Transgenic plants for conferring insect tolerance-protease inhibitor approach. In: S. King & R. Win (eds), Transgenic Plants, Vol. I. London: Butterworths (in press).

    Google Scholar 

  • Hoffman, M.P., F.G. Zalom, J.M. Smilanick, L.D. Malyj, J. Kiser, L.T. Wilson, V.A. Hilder & W.M. Barnes (1991). Field evaluation of transgenic tobacco containing genes encoding Bacillus thuringiensis d-endotoxin or Cowpea trypsin inhibitor: efficacy against Helicoverpa zea (submitted).

    Google Scholar 

  • Janzen, D.H., H.B. Juster & I.E. Liener (1976). Insecticidal action of the phytohemagglutinin in black bean on a bruchid beetle. Science 192: 795–796.

    Article  PubMed  CAS  Google Scholar 

  • Jayne-Williams, D.J. & C.D. Burgess (1974). Further observations on the toxicity of navy beans (Phaseolus vulgaris) for Japanese quail (Coturnix coturnix japonica). J. Appl. Bacteriol. 37: 149–169.

    Article  Google Scholar 

  • Johnson, R., J. Narvaez, G. An & C.A. Ryan (1989). Expression of proteinase inhibitors I and II in transgenic tobacco plants: effects on natural defense against Manduca sexta larvae. Proc. Natl Acad. Sci. U.S.A. 86: 9871–9875.

    Article  PubMed  CAS  Google Scholar 

  • King, T.P., A. Pusztai & E.M.W. Clark (1980a). Immunocytochemical localisation of injested kidney bean (Phaseolus vulgaris) lectins in rat gut. Histochem. J. 12: 201–208.

    Article  CAS  Google Scholar 

  • King, T.P., A. Pusztai & E.M.W. Clarke (1980b). Kidney bean (Phaseolus vulgaris) lectin-induced lesions in rat small intestine. 3. Ultrastructural studies. J. Comp. Pathol. 92: 357.

    Article  Google Scholar 

  • Liener, I.E. (1980). Toxic constituents of Plant Foodstuffs, 2nd edition, New York Academic Press.

    Google Scholar 

  • Lotan, R., R. Cacan, M. Cacan, H. Debray, W.C. Carter & N. Sharon (1975). On the presence of two types of subunit in soybean agglutinin. FEBS Lett. 57: 100.

    Article  PubMed  CAS  Google Scholar 

  • Meiners, J.P. & T.C. Elden (1978). Resistance to insects and diseases in Phaseolus. In: R.S. Summerfield & A.H. Buting (eds), Advances in Legume Science, International Legume Conference, Kew, pp. 359–364.

    Google Scholar 

  • Metcalf, R.L. (1986). The ecology of insecticides and the chemical control of insects. In: M. Kogan (ed.), Ecological Theory and Integrated Pest Management. New York: John Wiley.

    Google Scholar 

  • Murdoch, L.L., J.E. Huesing, S.S. Nielsen, R.C. Pratt, & R.E. Shade (1990). Biological effects of plant lectins on the cowpea weevil. Phytochem. 29: 85–89.

    Article  Google Scholar 

  • Pearce, G., D. Strydom, S. Johnson & C.A. Ryan (1991). A polypeptide from tomato induces wound-inducible proteinase inhibitor proteins. Science 253: 895–898.

    Article  PubMed  CAS  Google Scholar 

  • Powell, K.S., A.M.R. Gatehouse, V.A. Hilder & J.A. Gatehouse (1992). Antimetabolic effects of plant lectins and plant and fungal enzymes on the nymphal stages of two important rice pests, Nilaparvata lugens and Nephotettix nigropictus. Entomol. exp. appl. (in press).

    Google Scholar 

  • Pusztai, A., E.M.W. Clarke & T.P. King (1979). The nutritional toxicity of Phaseolus vulgaris. Nutr. Soc. 38: 115–120.

    Article  CAS  Google Scholar 

  • Pusztai, A., G. Grant, S. Bardocz, D.J. Brown, J.C. Stewart, S.W.B. Ewen, A.M.R. Gatehouse & V.A. Hilder (1992). Nutritional evaluation of the trypsin inhibitor from cowpea. British J. Nutr. (in press).

    Google Scholar 

  • Redden, R.J., P. Dobie & A.M.R. Gatehouse (1983). The inheritance of seed resistance to Callosobruchus maculatus F. in cowpea (Vigna unguiculata L. Walp.). I. Analysis of parental, F1, F2, F3 and backcross seed generations. Aust. J. Agric. Res. 34: 681.

    Article  Google Scholar 

  • Shukle, R.H. & L.L. Murdock (1983). Lipoxygenase, trypsin inhibitor, and lectin from soybeans: effects on larval growth of Manduca sexta (Lepidoptera: Sphingidae). Environ. Entomol. 12: 787–791.

    CAS  Google Scholar 

  • Shumway, L.K., V.V. Yang & C.A. Ryan (1976). Evidence for the presence of proteinase inhibitor I in vacuolar protein bodies of plant cells. Planta 129: 161–165.

    Article  CAS  Google Scholar 

  • Steffens, R., F.R. Fox & B. Kassel (1978). Effect of trypsin inhibitors on growth and metamorphosis of corn borer larvae Ostrinia nubilalis (Hübner). J. Agric. Food Chem. 26: 170–174.

    Article  CAS  Google Scholar 

  • Van Damme, E.J.M., A.K. Allen & W.J. Peumans (1987). Isolation and characterization of a lectin with exclusive specificity towards mannose from snowdrop (Galanthus nivalis) bulbs. FEBS Lett. 215: 140–144.

    Article  Google Scholar 

  • Walker-Simmons, M. & C.A. Ryan (1977). Immunological identification of proteinase inhibitors I and II in isolated tomato leaf vacuoles. Plant Physiol. 60: 61–63.

    Article  PubMed  CAS  Google Scholar 

  • Xavier-Filho, J., F.A.P. Campos, M.B. Ary, C.P. Silva, M.M.M. Carvalho, M.L.R. Macedo, F.J.A. Lemos & G. Grant (1989). Poor correlation between levels of proteinase inhibitors found in seeds of different cultivars of cowpea (Vigna unguiculata) and the resistance/ susceptibility to predation by Callosobruchus maculatus. J. Agric. Food Chem. 37: 1139–1143.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Gatehouse, A.M.R., Hilder, V.A., Powell, K., Boulter, D., Gatehouse, J.A. (1992). Potential of plant-derived genes in the genetic manipulation of crops for insect resistance. In: Menken, S.B.J., Visser, J.H., Harrewijn, P. (eds) Proceedings of the 8th International Symposium on Insect-Plant Relationships. Series Entomologica, vol 49. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-1654-1_73

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-1654-1_73

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4723-4

  • Online ISBN: 978-94-011-1654-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics