Skip to main content

Abstract

Bioproductivity is powered by solar energy conversion within the pigment-protein complexes of the thylakoid membrane. If these complexes are somehow modified, changes in cell physiology, growth and biomass yield are inevitable. It must be emphasised that effects far removed in time and space from the photochemical reactions are frequently traced to damage or a defect at the thylakoid level. Normal functioning of thylakoid processes should thus be established as a first step in seeking the root cause of a change in plant growth perceived in a field setting. Pathological conditions brought on by infection, stress or herbicide, have the potential to promote photobleaching of pigments, so techniques for monitoring pigment content and composition are discussed here, along with procedures for the analysis of individual pigment-protein complexes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Avron, M. (1960) Photophosphorylation by Swiss Chard chloroplasts. Biochim. Biophys. Acta 40, 257–272.

    Article  PubMed  CAS  Google Scholar 

  2. Shoshan, V., Y. Shahak and N. Shavit (1980) Quercetin interaction with the chloroplast ATPase complex. Biochim. Biophys. Acta 591, 421–433.

    Article  PubMed  CAS  Google Scholar 

  3. Schwartz, M. (1968) Light induced proton gradient links electron transport and photophosphorylation. Nature 219, 915–919.

    Article  PubMed  CAS  Google Scholar 

  4. Allen, J.F. and D.O. Hall (1974) The relationship of oxygen uptake to electron transport in Photosystem 1 of isolated chloroplasts: the role of superoxide and ascorbate. Biochem. Biophys. Research Communications 58, 579–585.

    Article  CAS  Google Scholar 

  5. Green, B.R. (1988) The chlorophyll-protein complexes of higher plant photosynthetic membranes. Photosynth. Research 15, 3–32.

    Article  CAS  Google Scholar 

  6. Chitnis, P.R. and J.P. Thornber (1988) The major light-harvesting complex of photo-system II: aspects of its molecular and cell biology. Photosynth. Research 16, 41–63.

    Article  CAS  Google Scholar 

  7. Allen, K.D. and L.A. Staehelin (1991) Resolution of 16–20 chlorophyll protein complexes using a low ionic strength native green gel system. Analyt. Biochem. 194, 214–222.

    Article  PubMed  CAS  Google Scholar 

  8. Young, A., P. Barry and G. Britton (1989) The occurrence of P-carotene-5,6-epoxide in the photosynthetic apparatus of higher plants. Zeitschrift Naturforschung 44c, 959–965.

    Google Scholar 

  9. Braumann, T. and L.H. Grimme (1981) Reversed phase high-performance liquid chromatography of chlorophylls and carotenoids. Biochim. Biophys. Acta 637, 8–17.

    Article  CAS  Google Scholar 

  10. Demmig-Adams, B. (1990) Carotenoids and photoprotection in plants: a role for the xanthophyll zeaxanthin. Biochim. Biophys. Acta 1020, 1–24.

    Article  CAS  Google Scholar 

  11. Bryant, D.A. and G. Cohen-Bazire (1981) Effects of chromatic illumination on cyano-bacterial phycobilisomes. European J. Biochem. 119, 415–424.

    Article  CAS  Google Scholar 

  12. Jeffrey, S.W. (1968) Quantitative thin-layer chromatography of chlorophylls and carotenoids from marine algae. Biochim. Biophys. Acta 162, 271–285.

    Article  PubMed  CAS  Google Scholar 

  13. Graan, T. and D.R. Ort (1984) Quantitation of the rapid electron donors to P700, the functional plastoquinone pool, and the ratio of the photosystems in spinach chloroplasts. J. Biol. Chem. 259, 14003–14010.

    PubMed  CAS  Google Scholar 

  14. Schoeder, H.-U. and W. Lockau (1986) Phylloquinone copurifies with the large sub-unit of photosystem I. FEBS Letters 199, 23–27.

    Article  CAS  Google Scholar 

  15. Okayama, S. (1976) Redox potential of plastoquinone A in spinach chloroplasts. Biochim. Biophys. Acta 440, 331–336.

    Article  PubMed  Google Scholar 

  16. Kramer, D.M. and A.R. Crofts (1990) Demonstration of a highly-sensitive portable double-flash kinetic spectrophotometer for measurement of electron transfer reactions in intact plants. Photosynth. Research 23, 231–240.

    Article  CAS  Google Scholar 

  17. Kramer, D. M., R.R. Wise, J.R. Frederick, D.M. Aim, J.D. Hesketh, D.R. Ort and A.R. Crofts (1990) Regulation of coupling factor in field-grown sunflower: a redox model relating coupling factor activity to the activities of other thioredoxin-dependent chloroplast enzymes. Photosynth. Research 26, 213–222.

    Article  CAS  Google Scholar 

  18. Mauzerall, D. and N.L. Greenbaum (1989) The absolute size of a photosynthetic unit. Biochim. Biophys. Acta 974, 119–140.

    Article  CAS  Google Scholar 

  19. Marsho, T.V. and B. Kok (1980) P700 detection. Methods Enzymol. 69, 280–289.

    Article  CAS  Google Scholar 

  20. Schreiber, U., C. Klughammer and C. Neubauer (1988) Measuring P700 absorbance changes around 830 nm with a new type of pulse modulation system. Zeitschrift Naturforschung 43c, 686–698.

    Google Scholar 

  21. Chow, W.S., A.B. Hope and J.M. Anderson (1989) Oxygen per flash from leaf disks quantifies Photosystem II. Biochim. Biophys. Acta 973, 105–108.

    Article  CAS  Google Scholar 

  22. Piccioni, R., G. Bellemare and N-H. Chua (1982) Methods of polyacrylamide gel electrophoresis in the analysis and preparation of plant polypeptides. In: Methods in Chloroplast Molecular Biology (M. Edelman, R.B. Hallick and N-H Chua, eds.) Elsevier Biomedical Press, Amsterdam, p. 985.

    Google Scholar 

  23. Camm, E.L. and B.R. Green (1980) Fractionation of thylakoid membranes with the non-ionic detergent octyl-P-D-glucopyranoside. Plant Physiol. 66, 428.

    Article  PubMed  CAS  Google Scholar 

  24. Delepelaire, P. and N-H. Chua (1979) Lithium dodecyl sulphate/polyacrylamide gel electrophoresis of thylakoid membranes at 4° C: characterizations of two additional chlorophyll a-protein complexes. Proc. Natl. Acad. Sci. USA 76, 111.

    Article  PubMed  CAS  Google Scholar 

  25. Blum, H., H. Beier and H.J. Gross (1987) Improved silver staining of plant proteins, RNA and DNA in polyacrylamide gels. Electrophoresis 8, 93–99.

    Article  CAS  Google Scholar 

  26. Beis, A. and A. Lazou (1990) Removal of artifactual bands associated with the presence of 2-mercaptoethanol in two-dimensional polyacrylamide gel delectrophoresis. Analyt. Biochem. 190, 57–59.

    Article  PubMed  CAS  Google Scholar 

  27. Baldry, C.W., C. Bucke and J. Coombs (1970) Phenols, phenol oxidase and photosynthetic activity in chloroplasts isolated from sugar cane and spinach. Planta 94, 107–123; 124–129.

    Google Scholar 

  28. Golbeck, J.H. and K.V. Cammarata (1981) Spinach thylakoid polyphenol oxidase: isolation, activation and properties of the native chloroplast enzyme. Plant Physiol 67, 977–984.

    Article  PubMed  CAS  Google Scholar 

  29. Meyer, H-U. and B. Biehl (1982) Relation between photosynthetic and phenolase activities in spinach chloroplasts. Phyto-chemistry 21, 9–12.

    CAS  Google Scholar 

  30. Yu, H-F., S.M. Newman, N.T. Emnetta, M.L. Fisher and J.C. Steffens (1991) Cloning of tomato polyphenol oxidase cDNAs and enzyme conservation betweeen polyphenol oxidases and tyrosinases. Plant Physiol 96(Suppl.), 5.

    Google Scholar 

  31. Bradford, M.M. (1976) Rapid and sensitive method for quantitation of microgram quantities of protein utilising principle of protein-dye binding. Analyt. Biochem. 72, 248–254.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

D. O. Hall J. M. O. Scurlock H. R. Bolhàr-Nordenkampf R. C. Leegood S. P. Long

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Hind, G. (1993). Thylakoid components and processes. In: Hall, D.O., Scurlock, J.M.O., Bolhàr-Nordenkampf, H.R., Leegood, R.C., Long, S.P. (eds) Photosynthesis and Production in a Changing Environment. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-1566-7_18

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-1566-7_18

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-412-42910-1

  • Online ISBN: 978-94-011-1566-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics