Skip to main content

The cardiac surgeon’s viewpoint of myocardial viability

  • Chapter
Myocardial viability

Abstract

In 1968, Favaloro introduced coronary artery bypass grafting (CABG) as therapy for coronary artery stenosis [1]. Coronary bypass surgery has evolved since then and is today an important therapeutic option besides percutaneous transluminal angioplasty (PTCA) and conservative treatment for patients with coronary artery disease. Since the introduction of bypass surgery, the indications have been extensively studied to define those patients who may benefit most from this intervention and to identify patients with high risk. In patients with diminished ejection fraction, left main disease, severe two- or three-vessel disease or proximal left anterior descending (LAD) stenosis, or for patients with unstable or, in contrast, mild angina, long-term survival improves and anginal complaints are relieved following bypass surgery [2, 3]. Besides symptomatic relief, long-term survival related to the preservation of left ventricular function is an important goal.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Favaloro RG. Saphenous vein autograft replacement of severe segmental coronary occlusion: Operative technique. Ann Thorac Surg 1968; 5: 334–339.

    Article  PubMed  CAS  Google Scholar 

  2. Myers WO, Schaff HV, Gersh BJ, Fisher KD, Kosinski AS, Mock MD et al. Improved survival of surgically treated patients with triple vessel coronary artery disease and severe angina pectoris. A report from the Coronary Artery Surgery Study (CASS) registry. J Thorac Cardiovasc Surg 1989; 97: 487–495.

    PubMed  CAS  Google Scholar 

  3. American College of Cardiology/American Heart Association. ACC/AHA guidelines and indications for coronary artery bypass graft surgery. A report of the ACC/AHA Task Force on Assessment of Diagnostic and Therapeutic Cardiovascular Procedures (Subcommittee on Coronary Artery Bypass Graft Surgery). Circulation 1991; 83: 1125–1173.

    Article  Google Scholar 

  4. Horn HR, Teichholz LE, Cohn PF, Herman MV, Gorlin R. Augmentation of left ventricular contraction in coronary artery disease by an inotropic catecholamine. The epinephrine ventriculogram. Circulation 1974; 49: 1063–1071.

    Article  PubMed  CAS  Google Scholar 

  5. Rozanski A, Berman D, Gray R, Diamond G, Raymond M, Pranse J et al. Preoperative prediction of reversible myocardial asynergy by postexercise radionuclide ventriculography. N Engl J Med 1982; 307: 212–216.

    Article  PubMed  CAS  Google Scholar 

  6. Braunwald E, Rutherford JD. Reversible ischemic left ventricular dysfunction: Evidence for the ‘hibernating myocardium’. J Am Coll Cardiol 1986; 8: 1467–1470.

    Article  PubMed  CAS  Google Scholar 

  7. Rahimtoola SH. The hibernating myocardium. Am Heart J 1989; 117: 211–221.

    Article  PubMed  CAS  Google Scholar 

  8. Dilsizian V, Bonow RO, Cannon RO 3d, Tracey CM, Vitale DF, Mcintosh CL et al. The effect of coronary artery bypass grafting on left ventricular systolic function at rest: Evidence for preoperative subclinical myocardial ischemia. Am J Cardiol 1988; 61: 1248–1254.

    Article  PubMed  CAS  Google Scholar 

  9. Elefteriades JA, Tolis G Jr, Levi E, Mills LK, Zaret BL. Coronary artery bypass grafting in severe left ventricular dysfunction: Excellent survival with improved ejection fraction and functional state. J Am Coll Cardiol 1993; 22: 1411–1417.

    Article  PubMed  CAS  Google Scholar 

  10. Elami A, Uretzky G, Appelbaum A, Gotsman MS, Borman JB. Improved functional results following myocardial revascularization in patients with left ventricular dysfunction. J Cardiovasc Surg (Torino) 1987; 28: 61–67.

    CAS  Google Scholar 

  11. Brunken R, Tillisch J, Schwaiger M, Child JS, Marshall R, Mandelkern M et al. Regional perfusion, glucose metabolism, and wall motion in patients with chronic electrocardiographic Q-wave infarctions: Evidence for persistence of viable tissue in some infarct regions by positron emission tomography. Circulation 1986; 73: 951–963.

    Article  PubMed  CAS  Google Scholar 

  12. Marwick TH, MacIntyre WJ, Lafont A, Nemec JJ, Salcedo EE. Metabolic responses of hibernating and infarcted myocardium to revascularisation. A follow-up study of regional perfusion, function, and metabolism. Circulation 1992; 85: 1347–1353.

    Article  PubMed  CAS  Google Scholar 

  13. Bourassa MG, Lesperance J, Campeau L, Saltiel J. Fate of left ventricular contraction following aortocoronary venous grafts. Early and late postoperative modifications. Circulation 1972; 46: 724–730.

    Article  PubMed  CAS  Google Scholar 

  14. Proudfit WL, Bruschke AV, Sones FM Jr. Natural history of obstructive coronary artery disease: Ten-year study of 601 nonsurgical cases. Prog Cardiovasc Dis 1978; 21: 53–78.

    Article  PubMed  CAS  Google Scholar 

  15. Kalmar P, Irrgang E. Cardiac surgery in Germany during 1991. A report by the German Society for Thoracic and Cardiovascular Surgery. Thorac Cardiovasc Surg 1992; 40: 163–165.

    Article  PubMed  CAS  Google Scholar 

  16. Christakis GT, Weisel RD, Fremes SE, Ivanov J, David TE, Goldman BS et al. Coronary artery bypass grafting in patients with poor ventricular function. Cardiovascular Surgeons of the University of Toronto. J Thorac Cardiovasc Surg 1992; 103: 1083–1091; discussion 1091-1092.

    PubMed  CAS  Google Scholar 

  17. Bounous EP, Mark DB, Pollock BG, Hlatky MA, Harrel FE Jr, Lee KL et al. Surgical survival benefits for coronary disease patients with left ventricular dysfunction. Circulation 1988; 78: 1151–1157.

    Google Scholar 

  18. Coronary artery surgery study (CASS): a randomized trial of coronary artery bypass surgery. Survival data. Circulation 1983; 68: 939–950.

    Article  Google Scholar 

  19. Califf RM, Harrell FE Jr, Lee KL, Rankin JS, Mark DB, Hlatky MA et al. Changing efficacy of coronary revascularization. Implications for patient selection. Circulation 1988; 78: 1185–1191.

    Google Scholar 

  20. Veterans Affairs Coronary Artery Bypass Surgery Cooperative Study Group. Eighteen-year follow up in the Veterans Affairs Cooperative Study of Coronary Artery Bypass Surgery for stable angina. Circulation 1992; 86: 121–130.

    Article  Google Scholar 

  21. Bell MR, Gersh BJ, Schaff HV, Holmes DR Jr, Fisher LD, Alderman DL et al. Effect of completeness of revascularization on long-term outcome of patients with three-vessel disease undergoing coronary artery bypass surgery. A report from the Coronary Artery Surgery Study (CASS) Registry. Circulation 1992; 86: 446–457.

    Article  PubMed  CAS  Google Scholar 

  22. Loop FD, Lytle BW, Cosgrove DM, Stewart RW, Goormastic M, Williams GW et al. Influence of the internal-mammary-artery graft on 10-year survival and other cardiac events. N Engl J Med 1986; 314: 1–6.

    Article  PubMed  CAS  Google Scholar 

  23. Jones EL, Weinraub WS, Craver JM, Guyton RA, Cohen CL. Coronary bypass surgery: Is the operation different today? J Thorac Cardiovasc Surg 1991; 101: 108–115.

    PubMed  CAS  Google Scholar 

  24. Maddahi J, Garcia EV, Berman DS, Waxman A, Swan HJ, Forrester J. Improved noninvasive assessment of coronary artery disease by quantitative analysis of regional stress myocardial distribution and washout of thallium-201. Circulation 1981; 64: 924–935.

    Article  PubMed  CAS  Google Scholar 

  25. Tamaki N, Yonekura Y, Mukai T, Kodama S, Kadota K, Kambara H et al. Stress thallium-201 transaxial emission computed tomography: Quantitative versus qualitative analysis for evaluation of coronary artery disease. J Am Coll Cardiol 1984; 4: 1213–1221.

    Article  PubMed  CAS  Google Scholar 

  26. Pohost GM, Zir LM, Moore RH, McKusick KA, Guiney TE, Beller GA. Differentiation of transiently ischemic from infarcted myocardium by serial imaging after a single dose of thallium-201. Circulation 1977; 55: 294–302.

    Article  PubMed  CAS  Google Scholar 

  27. Dilsizian V, Bacharach SL, Perrone-Filardi P, Arrighi JM, Maurea S, Bonow RO. Concordance and disconcordance between rest-redistribution thallium imaging and thallium reinjection after stress-redistribution imaging for assessing viable myocardium: Comparison with metabolic activity by PET [abstract]. Circulation 1991; 84 (4 suppl II): 1189.

    Google Scholar 

  28. Dondi M, Tartagni F, Fallani F, Fanti S, Marengo M, DiTomasso I et al. A comparison of rest sestamibi and rest-redistribution thallium single photon emission tomography: Possible implications for myocardial viability detection in infarcted patients. Eur J Nucl Med 1993; 20: 26–31.

    Article  PubMed  CAS  Google Scholar 

  29. Gutman J, Berman DS, Freeman M, Rozanski A, Maddahi J, Waxman A et al. Time to completed redistribution of thallium-201 in exercise myocardial scintigraphy: Relationship to the degree of coronary artery stenosis. Am Heart J 1983; 106: 989–995.

    Article  PubMed  CAS  Google Scholar 

  30. Cloninger KG, DePuey EG, Garcia EV, Roubin GS, Robbins WL, Nody A et al. Incomplete redistribution in delayed thallium-201 single photon emission computed tomographic (SPECT) images: An overestimation of myocardial scarring. J Am Coll Cardiol 1988; 12: 955–963.

    Article  PubMed  CAS  Google Scholar 

  31. Kiat H, Berman DS, Maddahi J, De Yang L, Van Train K, Rozanski A et al. Late reversibility of tomographic myocardial thallium-201 defects: An accurate marker of myocardial viability. J Am Coll Cardiol 1988; 12: 1456–1463.

    Article  PubMed  CAS  Google Scholar 

  32. Dilsizian V, Rocco TP, Freedman NM, Leon MB, Bonow RO. Enhanced detection of ischemic but viable myocardium by the reinjection of thallium after stress-redistribution imaging. N Engl J Med 1990; 323: 141–146.

    Article  PubMed  CAS  Google Scholar 

  33. Van Eck-Smit BLF, van der Wall EE, Kuijper AFM, Zwinderman AH, Pauwels EK. Immediate thallium-201 reinjection following stress imaging: A time-saving approach for detection of myocardial viability. J Nucl Med 1993; 34: 737–743.

    PubMed  Google Scholar 

  34. Rozanski A, Berman DS, Gray R, Levy R, Raymond M, Maddahi J et al. Use of thallium-201 redistribution scintigraphy in the preoperative differentiation of reversible and nonreversible myocardial asynergy. Circulation 1981; 64: 936–944.

    Article  PubMed  CAS  Google Scholar 

  35. Ritchie JL, Narahara KA, Trobaugh GB, Williams DL, Hamilton GW. Thallium-201 myocardial imaging before and after coronary revascularization: Assessment of regional myocardial blood flow and graft patency. Circulation 1977; 56: 830–836.

    Article  PubMed  CAS  Google Scholar 

  36. Verani MS, Marcus ML, Spoto G, Rossi NP, Ehrhardt JC, Razzak MA. Thallium-201 myocardial perfusion scintigrams in the evaluation of aorto-coronary saphenous bypass surgery. J Nucl Med 1978; 19: 765–772.

    PubMed  CAS  Google Scholar 

  37. Greenberg BH, Hart R, Botvinick EH, Werner JA, Brundage BH, Shames DM et al. Thallium-201 myocardial perfusion scintigraphy to evaluate patients after coronary bypass surgery. Am J Cardiol 1978; 42: 167–176.

    Article  PubMed  CAS  Google Scholar 

  38. Robinson PS, Williams BT, Webb-Peploe MM, Crowther A, Coltart DJ. Thallium-201 myocardial imaging in assessment of results of aortocoronary bypass surgery. Br Heart J 1979; 42: 455–462.

    Article  PubMed  CAS  Google Scholar 

  39. Hirzel HO, Nuesch K, Sialer G, Horst W, Krayenbuhl HP. Thallium-201 exercise myocardial imaging to evaluate myocardial perfusion after coronary bypass surgery. Br Heart J 1980; 43: 426–435.

    Article  PubMed  CAS  Google Scholar 

  40. Gibson RS, Watson DD, Taylor GJ, Crosby IK, Wellons HL, Holt ND et al. Prospective assessment of regional myocardial perfusion before and after coronary revascularization surgery by quantitative thallium-201 scintigraphy. J Am Coll Cardiol 1983; 1: 804–815.

    Article  PubMed  CAS  Google Scholar 

  41. Brundage BH, Massie BM, Botvinick EH. Improved regional ventricular function after successful surgical revascularization. J Am Coll Cardiol 1984; 3: 902–908.

    Article  PubMed  CAS  Google Scholar 

  42. Liu P, Kiess MC, Okada RD, Block PC, Strauss HW, Pohost GM et al. The persistent defect on exercise thallium imaging and its fate after myocardial revascularization: Does it represent scar or ischemia? Am Heart J 1985; 110: 996–1001.

    Article  PubMed  CAS  Google Scholar 

  43. Tamaki N, Yonekura Y, Yamashita K, Senda M, Saji H, Konishi Y et al. Value of rest-stress myocardial positron tomography using nitrogen-13 ammonia for the preoperative prediction of reversible asynergy. J Nucl Med 1989; 30: 1302–1310.

    PubMed  CAS  Google Scholar 

  44. Ohtani H, Tamaki N, Yonekura Y, Mohiuddin IH, Hirata K, Ban T et al. Value of thallium-201 reinjection after delayed SPECT imaging for predicting reversible ischemia after coronary artery bypass grafting. Am J Cardiol 1990; 66: 394–399.

    Article  PubMed  CAS  Google Scholar 

  45. Ohtani H, Tamaki N, Mohiuddin IH, Yonekura Y, Konishi J, Hirata K et al. Minimal redistribution of thallium-201 representing reversible ischemia after coronary bypass surgery: Value of quantitative analysis of exercise thallium-201 SPECT [Japanese]. J Cardiol 1991; 21: 835–846.

    PubMed  CAS  Google Scholar 

  46. Tamaki N, Ohtani H, Yamashita K, Magata Y, Yonekura Y, Nohara R et al. Metabolic activity in the areas of new-fill-in after thallium-201 reinjection: Comparison with positron emission tomography using fluorine-18-deoxyglucose. J Nucl Med 1991; 32: 673–678.

    PubMed  CAS  Google Scholar 

  47. Contini GA, Calbiani B, Antonelli AM, Campodonico R, Astorri E, Fesani F. Exercise thallium-201 myocardial scintigraphy before and after coronary artery bypass surgery. In press.

    Google Scholar 

  48. Berger BC, Watson DD, Burwell LR, Crosby IK, Wellons HA, Teates CD et al. Redistribution of thallium at rest in patients with stable and unstable angina and the effect of coronary artery bypass surgery. Circulation 1979; 60: 1114–1125.

    Article  PubMed  CAS  Google Scholar 

  49. Iskandrian AS, Hakki AH, Kane SA, Goel IP, Mundth ED, Segal BL. Rest and redistibution thallium-201 myocardial scintigraphy to predict improvement in left ventricular function after coronary arterial bypass grafting. Am J Cardiol 1983; 51: 1312–1316.

    Article  PubMed  CAS  Google Scholar 

  50. Mori T, Minamiji K, Kurogane H, Ogawa K, Yoshida Y. Rest-injected thallium-201 imaging for assessing viability of severe asynergic regions. J Nucl Med 1991; 32: 1718–1724.

    PubMed  CAS  Google Scholar 

  51. Naruse H, Ohyanagi M, Iwasaki T, Miyamoto T, Fukuchi M. Preoperative evaluation of myocardial viability by thallium-201 imaging in patients with old myocardial infarction who underwent coronary revascularization. Ann Nucl Med 1992; 6: 51–58.

    Article  PubMed  CAS  Google Scholar 

  52. Giubbini R, Milan E, Rossini PL, Alfieri O, Ferrari R, Metra M et al. Combined evaluation of perfusion and function for the identification of viable myocardium. J Nucl Biol Med 1992; 36 (2 Suppl): 126–129.

    PubMed  CAS  Google Scholar 

  53. Ragosta M, Beller GA, Watson DD, Kaul S, Gimple LW. Quantitative planar rest-redistribution 201T1 imaging in detection of myocardial viability and prediction of improvement in left ventricular function after coronary artery bypass surgery in patients with severely depressed left ventricular function. Circulation 1993; 87: 1630–1641.

    Article  PubMed  CAS  Google Scholar 

  54. Coleman PS, Metherall JA, Pandian NG, Shea NL, Oates E, Konstam MA et al. Predicting enhanced regional ventricular function post-revascularization: Comparison of thallium-201 and Sestamibi in patients with left ventricular dysfunction [abstract]. Circulation 1992; 86 (4 Suppl I): 1108.

    Article  Google Scholar 

  55. Kuijper AF, Niemeyer MG, D’haene EG, van der Wall EE, Pauwels EK. Stress-reinjection thallium-201 scintigraphy: Prediction of effect of coronary artery bypass grafting on regional myocardial perfusion [abstract]. J Am Coll Cardiol 1993; 21 (Suppl A): 389A.

    Google Scholar 

  56. Zimmerman R, Tillmanns H, Rauch B, Mall G, Hagl S. Structural alterations and the effect of coronary revascularization in myocardial regions with mild-to-moderate or severe persistent thallium-201 defects [abstract]. Circulation 1993; 88 (4 Suppl I): 1199.

    Google Scholar 

  57. Tillisch J, Brunken R, Marshall R, Schwaiger M, Mandelkern M, Phelps M et al. Reversibility of cardiac wall-motion abnormalities predicted by positron tomography. N Engl J Med 1986; 314: 884–888.

    Article  PubMed  CAS  Google Scholar 

  58. Tamaki N, Yonekura Y, Yamashita K, Saji H, Magata Y, Senda M et al. Positron emission tomography using fluorine-18 deoxyglucose in evaluation of coronary artery bypass grafting. Am J Cardiol 1989; 64: 860–865.

    Article  PubMed  CAS  Google Scholar 

  59. Lucignani G, Paolini G, Landoni C, Zuccari M, Paganelli G, Galli L et al. Presurgical identification of hibernating myocardium by combined use of technetium-99m hexakis 2-methoxyisobutylisonitrile single photon emission tomography and fluorine-18 fluoro-2-deoxy-D-glucose positron emission tomography in patients with coronary artery disease. Eur J Nucl Med 1992; 19: 874–881.

    Article  PubMed  CAS  Google Scholar 

  60. Schelbert HR, Schwaiger M. Positron emission tomography in human myocardial ischemia. Herz 1987; 12: 22–40.

    PubMed  CAS  Google Scholar 

  61. Al-Aouar ZR, Eitzman D, Hepner A, Lee KS, Kirsh MM, Hicks RJ et al. PET assessment of myocardial tissue viability: University of Michigan experience [abstract]. J Nucl Med 1990; 31 (5 Suppl): 801.

    Google Scholar 

  62. Tamaki N, Yonekura Y, Yamashita K, Ohtani H, Hirata K, Ban T et al. Prediction of reversible ischemia after coronary artery bypass grafting by positron emission tomography. J Cardiol 1991; 21: 193–201.

    PubMed  CAS  Google Scholar 

  63. Marwick TH, Nemec JJ, Lafont A, Salcedo EE, Maclntyre WJ. Prediction of postexercise fluor-18 deoxyglucose positron emission tomography of improvement in exercise capacity after revascularization. Am J Cardiol 1992; 69: 854–859.

    Article  PubMed  CAS  Google Scholar 

  64. Tamaki N. Assessment of myocardial viability by use of multiple clinical parameters and effect on prognosis. Coronary Artery Dis 1993; 4: 521–528.

    Article  CAS  Google Scholar 

  65. Gropler RJ, Geltman EM, Sampathkumaran K, Perez JE, Schechtman KB, Conversano A et al. Comparison of carbon-11-acetate with fluorine-18-fluorodeoxyglucose for delineating viable myocardium by positron emission tomography. J Am Coll Cardiol 1993; 22: 1587–1597.

    Article  PubMed  CAS  Google Scholar 

  66. Eitzman D, Al-Aouar Z, Kanter H, Vom Dahl J, Kirsh M, Deet GM et al. Clinical outcome of patients with advanced coronary artery disease after viability studies with positron emission tomography. J Am Coll Cardiol 1992; 20: 559–565.

    Article  PubMed  CAS  Google Scholar 

  67. Breisblatt WM, Stein KL, Wolfe CJ, Follansbee WP, Capozzi J, Armitage JM et al. Acute myocardial dysfunction and recovery: A common occurrence after coronary bypass surgery. J Am Coll Cardiol 1990; 15: 1261–1269.

    Article  PubMed  CAS  Google Scholar 

  68. Sbarbaro JA, Karunaratne H, Cantez S, Harper PV, Resnekov L. Thallium-201 imaging in assessment of aortocoronary bypass graft patency. Br Heart J 1979; 42: 553–561.

    Article  PubMed  CAS  Google Scholar 

  69. Wainwright RJ, Brennand-Roper DA, Maisey MN, Sowton E. Exercise thallium-201 myocardial scintigraphy in the follow-up of aortocoronary bypass graft surgery. Br Heart J 1980; 43: 56–66.

    Article  PubMed  CAS  Google Scholar 

  70. Kolibash AJ, Call TD, Bush CA, Tetalman MR, Lewis RP. Myocardial perfusion as an indicator of graft patency after coronary artery bypass surgery. Circulation 1980; 61: 882–887.

    Article  PubMed  CAS  Google Scholar 

  71. Lösse B, Von Lierde C, Rafflenbeul D, Kronert H, Bircks W, Feinendegen LE et al. Wert der Thallium-201-Myocardszintigraphie für die Beurteilung des Funktionszustandes aorto-koronarer Bypass-Gefäße. Z Kardiol 1981; 70: 231–237.

    PubMed  Google Scholar 

  72. Pfisterer M, Emmenegger H, Schmitt HE, Muller-Brand J, Hasse J, Gradel E et al. Accuracy of serial myocardial perfusion scintigraphy with thallium-201 for prediction of graft patency early and late after coronary artery bypass surgery. A controlled prospective study. Circulation 1982; 66: 1017–1024.

    Article  PubMed  CAS  Google Scholar 

  73. Usdin JP, Vasile N, Cinotti L, Meignan M, Legendre T, Larde P et al. Evaluation atraumatique de la permeabilitè des pontages aorto-coronariens par la tomodensitometrie et la scintigraphie myocardique à l’effort. Arch Mai Coeur Vaiss 1983; 76: 183–192.

    CAS  Google Scholar 

  74. Engelstad BL, Wagner S, Herfkens R, Botvinick E, Brundage B, Lipton M. Evaluation of the post-coronary artery bypass patient by myocardial perfusion scintigraphy and computed tomography. AJR Am J Roentgenol 1983; 141: 507–512.

    PubMed  CAS  Google Scholar 

  75. Rasmussen SL, Nielsen SL, Amtorp O, Folke K, Fritz-Hansen P. 201-Thallium imaging as an indicator of graft patency after coronary artery bypass surgery. Eur Heart J 1984; 5: 494–499.

    PubMed  CAS  Google Scholar 

  76. Huikuri HV, Ikaheimo MJ, Korhonen UR, Heikkila J, Takkunen JT. Thallium scintigraphy in prediction of occlusion of bypass grafts in asymptomatic and symptomatic patients. Acta Med Scand 1987; 222: 311–318.

    Article  PubMed  CAS  Google Scholar 

  77. Zimmermann R, Tillmanns H, Knapp WH, Neumann FJ, Saggau W, Kubler W. Noninvasive assessment of coronary artery bypass patency: Determination of myocardial thallium-201 washout rates. Eur Heart J 1988; 9: 319–327.

    PubMed  CAS  Google Scholar 

  78. Naruse H, Kawamoto H, Ohyanagi M, Hazzaki R, Yasutomi N, Iwasaki T et al. Indications for coronary revascularization and the postoperative evaluations using Tl-201 exercise myocardial scintigraphy and a bull’s eye display [Japanese]. J Cardiol 1988; 18: 79–88.

    PubMed  CAS  Google Scholar 

  79. Kureshi SA, Tamaki N, Yonekura Y, Koide H, Konishi Y, Ban T et al. Value of stress thallium-201 emission tomography for predicting improvement after coronary bypass grafting and assessing graft patency. Jpn Heart J 1989; 30: 287–299.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Venneker, E.H.G., Van Eck-Smit, B.L.F., Van Rijk-Zwikker, G.L. (1994). The cardiac surgeon’s viewpoint of myocardial viability. In: Iskandrian, A.S., Van Der Wall, E.E. (eds) Myocardial viability. Developments in Cardiovascular Medicine, vol 154. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-1170-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-1170-6_9

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4510-0

  • Online ISBN: 978-94-011-1170-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics