Skip to main content

Part of the book series: Molecular and Cell Biology of Human Diseases Series ((Mol. Cell Biol. Hu. Dis.,volume 20))

Abstract

Advances in the methodology and practice of human gene therapy have been substantial in the past few years. In contrast to traditional palliative forms of therapy in which a therapeutic drug, protein or peptide product must be repeatedly administered to treat a disease, successful gene therapy would result in endogenous production of the therapeutic product in situ. Research on the design and application of gene transfer vehicles and genetically altered cells to the treatment of a variety of diseases has greatly expanded the dimension and scope of this field such that almost any genetic alteration of cells and tissues to effect a therapeutic outcome is now considered to employ the principles of gene therapy. Moreover, developments primarily in the use of novel viral vectors coupled with the rapid discovery of new disease-causing genes have driven the field with increasing vigor.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Anderson J.K., Garber D.A., Meaney C.A. and Breakefield X.O. (1992) Gene transfer into mammalian central nervous system using herpesvirus vectors: extended expression of bacterial lacZ in neurons using the neuron-specific enolase promoter. Human Gene Ther., 3, 487–99.

    Article  Google Scholar 

  • Axelrod, J.D., Reagan, M.S. and Majors, J. (1993) GAL4 disrupts a repressing nucleosome during activation of GAL 1 transcription in vivo. Genes Dev., 7, 857–69.

    Article  CAS  PubMed  Google Scholar 

  • Bak, I.J., Markhan, C.H. and Cook, M.L. (1977) Intra-axonal transport of herpes simplex virus in the rat central nervous system. Brain Res., 136, 415–29.

    Article  CAS  PubMed  Google Scholar 

  • Batchelor, A.H. and O’Hare, P.O. (1990) Regulation and cell-type-specific activity of a promoter located upstream of the latency-associated transcript of herpes simplex virus type 1. J. Virol., 64, 3269–79.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Batchelor, A.H. and O’Hare, P.O. (1992) Localization of cis-acting sequence requirements in the promoter of the latency-associated transcript of herpes simplex virus type 1 required for cell-type-specific activity. J. Virol., 66, 3573–82.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Batterson, W. and Roizman, B. (1983) Characterization of the herpes simplex virion-associated factor responsible for the induction of α-genes. J. Virol., 46, 371–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Block, T.M., Spivack, J.G., Steiner, I., et al. (1990) A herpes simplex virus type 1 latency-associated transcript mutant reactivates with normal kinetics from latent infection. J. Virol., 64, 3417–26.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bossone, S.A., Asselin, C., Patel, A.J. and Marcu, K.B. (1992) MAZ a zinc finger protein binds to c-MYC and C2 gene sequences regulating transcriptional initiation and termination. Proc. Natl Acad. Sci. USA, 89, 7452–6.

    Article  CAS  PubMed  Google Scholar 

  • Bryan, P.N. and Folk. W.R. (1986) Enhancer sequences responsible for DNase I hypersensitivity in Polyomavirus chromatin. Mol. Cell. Biol., 6, 2249–52.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Campbell, M.E.M., Palfreyman, J.W. and Preston, C.M. (1984) Identification of herpes simplex virus DNA sequences which encode a trans-acting polypeptide responsible for stimulation of immediate early transcription. J. Mol. Biol., 180, 1–19.

    Article  CAS  PubMed  Google Scholar 

  • Carey, M., Leatherwood, J. and Ptashne, M. (1990) A potent GAL4 derivative activates transcription at a distance in vitro. Science, 247, 710–12.

    Article  CAS  PubMed  Google Scholar 

  • Chasman, D.I., Leatherwood, M., Carey, M., Ptashne, M. and Kornberg, R.D. (1989) Activation of yeast polymerase II transcription by herpesvirus VP16 and GAL4 derivative in vitro. Mol. Cell. Biol., 9, 4746–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chiocca, A.E., Choi, B.B., Cai, W. et al. (1990) Transfer and expression of the lacZ gene in rat brain neurons by herpes simplex virus mutants. New Biol., 2, 739–46.

    CAS  PubMed  Google Scholar 

  • Cook, M.L. and Stevens, J.G. (1973) Pathogenesis of herpetic neuritis and ganglionitis in mice: evidence of intra-axonal transport of infection. Infect. Immun., 7, 272–88.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dai, Y., Roman, M., Naviaux, R.K. and Verma, I.M. (1992) Gene therapy via primary myoblasts: long-term expression of factor IX protein following transplantation in vivo. Proc. Natl Acad. Sci. USA, 89, 10892–5.

    Article  CAS  PubMed  Google Scholar 

  • Deatly, A.M., Spivack, J.G., Lavi, E. et al. (1988) Latent herpes simplex virus type 1 transcripts in peripheral and central nervous systems tissues of mice map to similar regions of the viral genome. J. Virol., 62, 749–56.

    CAS  PubMed Central  PubMed  Google Scholar 

  • DeLuca, N.A., McCarthy, A.M. and Schaffer, P.A. (1985) Isolation and characterization of deletion mutants of herpes simplex virus type 1 in the gene encoding immediate-early regulatory protein ICP4. J. Virol., 56, 558–70.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Desai, P., Ramakrishnan, R., Lin, Z.W. et al. (1993) The RRI gene of herpes simplex virus type 1 is uniquely trans activated by ICP0 during infection. J. Virol., 67, 6125–35.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Deshmane, S.L. and Fraser, N.W. (1989) During latency herpes simplex virus type 1 DNA is associated with nucleosomes in a chromatin structure. J. Virol., 63, 943–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Devi-Rao, G.B., Goddart, S.A., Hecht, L.M. et al. (1991) Relationship between polyadenylated and nonpolyadenylated, HSV type 1 latency-associated transcripts. J. Gen. Virol., 65, 2179–90.

    CAS  Google Scholar 

  • Dixon, R.A.F. and Schaffer, P.A. (1980) Fine-structure mapping and functional analysis of temperature-sensitive mutants in the gene encoding the herpes simplex virus type 1 immediate early protein VP175. J. Virol., 36, 189–203.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dobson, A.T., Sederati, F., Devi-Rao, G. et al. (1989) Identification of the latency-associated transcript promoter by expression of rabbit β-globin mRNA in mouse sensory nerve ganglia latently infected with a recombinant herpes simplex virus. J. Virol., 63, 3844–51.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Doerig, C., Pizer, L.I. and Wilcox, C.L. (1991) An antigen encoded by the latency-associated transcripts in neuronal cell cultures latently infected with herpes simplex virus type 1. J. Virol., 65, 2724–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dressler, G.R., Rock, D.L. and Fraser, N.W. (1987) Latent herpes simplex virus type 1 DNA is not extensively methylated in vivo. J. Gen. Virol., 68, 1761–5.

    Article  CAS  Google Scholar 

  • Eissenberg, J.C., Cartwright, I.L. Thomas, G.H. and Elgin, S.C.R. (1985) Selected topics in chromatin structure. Annu. Rev. Genet., 19, 485–536.

    Article  CAS  PubMed  Google Scholar 

  • Farrell, M.J., Dobson, A.T. and Feldman, L.T. (1991) Herpes simplex virus latency-associated transcript is a stable intron. Proc. Natl Acad. Sci. USA, 88, 790–4.

    Article  CAS  PubMed  Google Scholar 

  • Fraser, N.W., Lawrence, W.C., Wroblewska, Z., Gilden, D.H. and Koprowski, H. (1981) Herpes simplex virus type 1 DNA in human brain tissue. Proc. Natl Acad. Sci. USA, 78, 6461–5.

    Article  CAS  PubMed  Google Scholar 

  • Gaffney, D.F., McLaughlin, J., Whitton, J.L. and Clements, J.B. (1985) A molecular system for the assay of transcription regulatory signals: the sequence TAATGARAT is required for herpes simplex virus immediate early gene activation. Nucleic Acids Res., 13, 7847–63.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gage, P.J., Sauer, B., Levine, M. and Glorioso, J.C. (1992) A cell-free recombination system for site-specific integration of multigenic shuttle plasmids into the herpes simplex virus type 1 genome. J. Virol., 66, 5509–15.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Goins, W.F., Sternberg, L.R., Croen, K.D. et al. (1994) A novel latency-active promoter is contained within the herpes simplex virus type 1 UL flanking repeats. J. Virol., 68, 2239–52.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gross, D.S. and Garrard, W.T. (1987) Poising chromatin for transcription. Trends Biochem. Sci., 12, 293–7.

    Article  CAS  Google Scholar 

  • Hill, J.M., Sedarati, F., Javier, R.T., Wagner, E.K. and Stevens, J.G. (1990) Herpes simplex virus latent phase transcription facilitates in vivo reactivation. Virology, 174, 117–25.

    Article  CAS  PubMed  Google Scholar 

  • Hill, T.J. (1985) Herpes simplex virus latency, in The Herpesviruses, (ed. B. Roizman), Plenum Press, New York, pp. 175–240.

    Chapter  Google Scholar 

  • Ho, D.Y. and Mocarski, E.S. (1989) Herpes simplex virus latent RNA (LAT) is not required for latent infection in the mouse. Proc. Natl Acad. Sci. USA, 86, 7596–600.

    Article  CAS  PubMed  Google Scholar 

  • Holland, L.E., Anderson, K.P., Shipman, C. and Wagner, E.K. (1980) Viral DNA synthesis is required for the effective expression of specific herpes virus type 1 mRNA species. Virology, 101, 10–24.

    Article  CAS  PubMed  Google Scholar 

  • Javier, R.T., Stevens, E.S., Dissene, V.B. and Wagner, E.K. (1988) A herpes simplex virus transcript abundant in latently infected neurons is dispensible for establishment of the latent state. Virology, 166, 254–7.

    Article  CAS  PubMed  Google Scholar 

  • Kolluri, R., Torrey, T.A. and Kinniburgh, A.J. (1992) A CT promoter element binding protein: definition of a double-strand and a novel single-strand DNA binding motif. Nucleic Acids Res., 20, 111–16.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kristie, T.M. and Roizman, B. (1987) Host cell proteins bind to the cis-acting site for virion-mediated induction of herpes simplex virus 1α-genes. Proc. Natl Acad. Sci. USA, 84, 71–5.

    Article  CAS  PubMed  Google Scholar 

  • Kwong, A.D. and Frenkel, N. (1987) Herpes simplex virus-infected cells contain a function(s) that destabilizes both host and viral mRNAs. Proc. Natl Acad. Sci. USA, 84, 1926–30.

    Article  CAS  PubMed  Google Scholar 

  • Leib, D.A., Bogard, C.L., Kosz-Vnenchak, M. et al. (1989) A deletion mutant of the latency-associated transcript of herpes simplex virus type 1 reactivates from the latent infection. J. Virol., 63, 2893–900.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Leiden, J.M., Frenkel, N. and Rapp, F. (1980) Identification of the herpes simplex virus DNA sequences present in six herpes simplex virus thymidine kinase-transformed mouse cell lines. J. Virol., 33, 272–85.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Margolis, T.P., Bloom, D.C., Dobson, A.T., Feldman, L.T. and Stevens, J.G. (1993) Decreased reporter gene expression during latent infection with HSV LAT promoter constructs. Virology, 197, 585–92.

    Article  CAS  PubMed  Google Scholar 

  • McCarthy, A.M., McMahan, L. and Schaffer, P.A. (1989) Herpes simplex virus type 1 ICP27 deletion mutants exhibit altered patterns of transcription and are DNA deficent. J. Virol., 63, 18–27.

    CAS  PubMed Central  PubMed  Google Scholar 

  • MacDonald, M.E., Ambrose, C.M., Duyao, M.P. et al. (1993) A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosomes. Cell, 72, 971–83.

    Article  Google Scholar 

  • McFarland, D.J., Sikora, E. and Hotchkin, J. (1986) The production of focal herpes encephalitis in mice by stereotaxic inoculation of virus. Anatomical and behavioral effects. J. Neurol. Sci., 72, 307–18.

    Article  CAS  PubMed  Google Scholar 

  • McKnight, J.L.C., Kristie, T.M. and Roizman, B. (1987) Binding of the virion protein mediating α gene induction in herpes simplex virus 1-infected cells to its cis-site requires cellular proteins. Proc. Natl Acad. Sci. USA, 84, 7061–5.

    Article  CAS  PubMed  Google Scholar 

  • McMahan, L. and Schaffer, P.A. (1990) The repressing and enhancing functions of the herpes simplex virus regulatory protein ICP27 map to C-terminal regions and are required to modulate viral gene expression very early in infection. J. Virol., 64, 3471–85.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Natarajan, R., Deshmane, S., Valyr-Nagy, T., Everett, R. and Fraser, N.W. (1991) A herpes simplex virus type 1 mutant lacking the ICP0 introns reactivates with normal efficiency. J. Virol., 65, 5569–73.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Newcomb, W.W. and Brown, J.C. (1994) Induced extrusion of DNA from the capsid of herpes simplex virus type 1. J. Virol., 68, 433–40.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nicosia, M., Deshmane, S.L., Zabolotny, J.M., Valyi-Nagy, T. and Fraser, N.W. (1993) Herpes simplex virus type 1 latency-associated transcript (LAT) promoter deletion mutants can express a 2-kilobase transcript mapping to the LAT region. J. Virol., 67, 7276–83.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Oroskar, A.A. and Read, G.S. (1989) Control of mRNA stability by the virion host shut-off function of herpes simplex virus. J. Virol., 63, 1897–906.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Palella, T.D., Silverman, L.J., Schroll, C.T. et al. (1988) Herpes simplex virus-mediated human hypoxanthine-guanine phosphoribosyl-transferase gene transfer into neuronal cells. Mol. Cell. Biol., 8, 457–460.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Palella T.D., Hidaka, Y., Silverman, L.J. et al. (1989) Expression of human HPRT mRNA in brains of mice infected with a recombinant herpes simplex virus type 1 vector. Gene, 80, 137–44.

    Article  CAS  PubMed  Google Scholar 

  • Panning, B. and Smiley, J.R. (1989) Regulation of cellular genes transduced by herpes simplex virus. J. Virol., 63, 1929–37.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pikaart, M., Feng, J. and Villeponteau, B. (1992) The Polyomavirus enhancer activates chromatin accessibility on integration into the HPRT gene. Mol. Cell. Biol., 12, 5785–92.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Postel, E.H., Mango, S.E. and Flint, S.J. (1989) A nuclease-hypersensitive element of the human c-myc promoter interacts with a transcription initiation. Mol. Cell. Biol., 9, 5123–33.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Preston, C.M. (1979) Control of herpes simplex virus type 1 mRNA synthesis in cells infected with wild-type virus or the temperature-sensitive mutant tsK. J. Virol., 29, 275–84.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pyrc, J.J., Moberg, K.H. and Hall, D.J. (1992) Isolation of a novel cDNA encoding a zinc-finger protein that binds to two sites within the c-myc promoter. Biochemistry, 31, 4102–10.

    Article  CAS  PubMed  Google Scholar 

  • Ramakrishnan, R., Fink, D.J., Guihua, J., Desai, P., Glorioso, J.C. and Levine, M. (1994) Competitive quantitative polymerase chain reaction (PCR) analysis of herpes simplex virus type 1 DNA and LAT RNA in latently infected cells of brain. J. Virol., 68, 1864–70.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Read, G.S. and Frenkel, N. (1983) Herpes simplex virus mutants defective in the virion-associated shutoff of host polypeptide synthesis and abnormal synthesis of a (immediate-early) viral polypeptides. J. Virol., 46, 498–512.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rivera-Gonzalez, R., Imbalzano, D.J., Gu, B. and DeLuca, N.A. (1994) The role of ICP4 repressor activity in the temporal regulation of the IE-3 and LAT promoter during HSV-1 infection. Virology, 202, 550–640.

    Article  CAS  PubMed  Google Scholar 

  • Rock, D.L., Nesburn, A.B., Ghiasi, H. et al. (1987) Detection of latency-related viral RNAs in trigeminal ganglia of rabbits infect with herpes simplex virus type 1. J. Virol., 61, 3820–6.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Roizman, B. and Furlong, D. (1974) The replication of herpesviruses, in Comprehensive Virology, Vol. 3, (eds H. Fraenkel-Conrat and R.R. Wagner), Plenum Press, New York, pp. 229–403.

    Google Scholar 

  • Roizman, B. and Sears, A.E. (1990) Herpes simplex viruses and their replication, in Virology, 2nd edn, (eds B.N. Fields, D.N. Knipe et al.), Raven Press, New York, pp. 1795–841.

    Google Scholar 

  • Roizman, B. and Sears, A.E. (1993) Herpes simplex viruses and their replication, in The Human Herpesviruses, (eds B. Roizman, R.J. Whitley and C. Lopez), Raven Press, New York, pp. 11–68.

    Google Scholar 

  • Rosen, D.R., Siddique, T., Patterson, D. et al. (1993) Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature, 362, 59–62.

    Article  CAS  PubMed  Google Scholar 

  • Sacks, W.R., Greene, C.C., Aschman, D.A. and Schaffer, P.A. (1985) Herpes simplex virus type 1 ICP27 is an essential regulatory protein. J. Virol., 55, 796–805.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sadowski, I., Ma, J., Triezenberg, S. and Ptashne, M. (1988) GAL4:VP16 is an unusually potent transcriptional activator. Nature, 335, 563–4.

    Article  CAS  PubMed  Google Scholar 

  • Sawtell, N.M. and Thompson, R.L. (1992) Herpes simplex virus type 1 latency-associated transcription unit promotes anatomical site-dependent establishment and reactivation from latency. J. Virol., 66, 2157–69.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sears, A.E., Halliburton, I.W,. Meignier, B. et al. (1985) Herpes simplex virus 1 mutant deleted in the α22 gene: growth and gene expression in permissive and restrictive cells and establishment of latency in mice. J. Virol., 55, 338–6.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sedarati, F., Izumi, K.M., Wagner, E.K. and Stevens, J.G. (1989) Herpes simplex virus type 1 latency-associated transcript plays no role in establishment or maintenance of a latent infection in murine sensory neurons. J. Virol., 63, 4455–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Seiler, M. and Schwab, M.E. (1984) Specific retrograde transport of nerve growth factor (NGF) from neocortex to nucleus basalis in the rat. Brain Res., 300, 33–9.

    Article  CAS  PubMed  Google Scholar 

  • Shih, M.-F., Arsenakis, M., Tiollais, P. and Roizman, B. (1984) Expression of hepatitis B virus S gene by herpes simplex virus type 1 vectors carrying a- and β-regulated gene chimeras. Proc. Natl Acad. Sci. USA, 81, 5867–70.

    Article  CAS  PubMed  Google Scholar 

  • Smiley, J.R., Smibert, C. and Everett, R.D. (1987) Expression of a cellular gene cloned in herpes simplex virus: rabbit b-globin is regulated as an early viral gene in infected fibroblasts. J. Virol., 61, 2368–77.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Spivack, J.G. and Fraser, N.W. (1987) Detection of herpes simplex virus type 1 transcripts during latent infection in mice. J. Virol., 61, 3841–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Spivack, J.G. and Fraser, N.W. (1988) Expression of herpes simplex virus type 1 latency-associated transcripts in the trigeminal ganglia of mice during acute infection and reactivation of latent infection. J. Virol., 62, 1479–85.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Spivack, J.G., Woods, G.M. and Fraser, N.W. (1991) Identification of a novel latency-specific splice donor signal within HSV type 1 2.0-kilobase latency-associated transcript (LAT): translation inhibition of LAT open reading frames by the intron within the 2.0-kilobase LAT. J. Virol., 65, 6800–10.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Steiner, I., Spivack, J.G., Lirette, R.P. et al. (1989) Herpes simplex virus type 1 latency-associated transcripts are evidently not essential for latent infection. EMBO Journal, 8, 505–11. Stevens, J.G. (1989) Human herpesviruses: a consideration of the latent state. Microbiol Rev., 53, 318–32.

    Google Scholar 

  • Stevens, J.G., Wagner, E.K., Devi-Rao, G.B., Cook, M.L. and Feldman, L.T. (1987) RNA complementary to a herpesviruses a gene mRNA is prominent in latently infected neurons. Science, 255, 1056–9.

    Article  Google Scholar 

  • Stroop, W.G. and Schaefer, D.C. (1987) Herpes simplex virus, type 1 invasion of the rabbit and mouse nervous systems revealed by in situ hybridization. Acta Neuropathol, 74, 124–32.

    Article  CAS  PubMed  Google Scholar 

  • Timmusk, T., Palm, K., Metsis, M. et al. (1993) Multiple promoters direct tissue specific expression of the rat BDNF gene. Neuron, 10, 475–89.

    Article  CAS  PubMed  Google Scholar 

  • Vegeto, E., Allan, G.F., Schrader, W.T. et al. (1992) The mechanism of RU486 antagonism is dependent on the conformation of the carboxy-terminal tail of the human progesterone receptor. Cell, 69, 703–13.

    Article  CAS  PubMed  Google Scholar 

  • Wagner, E.K., Devi-Rao, G., Feldman, L.T. et al. (1988a) Physical characterization of the herpes simplex virus latency-associated transcript in neurons. J. Virol., 63, 1194–2002.

    Google Scholar 

  • Wagner, E.K., Flanagan, W.M. and Devi-Rao, G.B. (1988b) The herpes simplex virus latency-associated transcript is spliced during the latent phase of infection. J. Virol., 62, 4577–85.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wang, Y., O’Malley, Jr, B.W., Tsai, S.Y. and O’Malley, B.W. (1994) A novel regulatory system for gene transfer. Proc. Natl Acad. Sci. USA, 91, 8180–4.

    Article  CAS  PubMed  Google Scholar 

  • Watson, R.J. and Clements, J.B. (1980) A herpes simplex virus type 1 function continuously required for early and late virus RNA synthesis. Nature, 285, 329–30.

    Article  CAS  PubMed  Google Scholar 

  • Wechsler, S.L., Nesburn, J., Zwaagstra, N. and Ghiasi, H. (1989) Sequence of the latency related gene of herpes simplex virus type 1. Virology, 168, 168–72.

    Article  CAS  PubMed  Google Scholar 

  • Wolfe, J.H., Deshmane, S.L. and Fraser, N.W. (1992) Herpes virus vector gene transfer and expression of β-glucuronidase in the central nervous system of MPS VII mice. Nature Genetics, 1, 379–84.

    Article  CAS  PubMed  Google Scholar 

  • Xu, L., Schaffner, W. and Rungger, D. (1993) Transcription activation by recombinant GAL4/VP16 in the Xenopus oocyte. Nucleic Acids Res., 21, 2775.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • York, I.A., Roop, C., Andrews, D.W. et al. (1994) A cytosolic herpes simplex virus protein inhibits antigen presentation to CD8+ T lymphocytes. Cell, 77, 525–55.

    Article  CAS  PubMed  Google Scholar 

  • Zwaagstra, J., Ghiasi, H., Nesburn, A.B. and Wechsler, S.L. (1989) In vitro promoter activity associated with the latency-associated transcript gene of herpes simplex virus type 1. J. Gen. Virol., 70, 2163–9.

    Article  CAS  PubMed  Google Scholar 

  • Zwaagstra, J.C., Ghiasi, H., Slanina, S.M. et al. (1990) Activity of herpes simplex virus type 1 latency-associated transcript (LAT) promoter in neuron-derived cells: evidence for neuron specificity and for a large LAT transcript. J. Virol., 64, 5019–28.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zwaagstra, J., Ghiasi, H., Nesburn, A.B. and Wechsler, S.L. (1991) Identification of a major regulatory sequence in the latency-associated transcript (LAT) promoter of herpes simplex virus type 1 (HSV-1). Virology, 182, 287–97.

    Article  CAS  PubMed  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Glorioso, J., Bender, M.A., Fink, D., Deluca, N. (1995). Herpes simplex virus vectors. In: Dickson, G. (eds) Molecular and Cell Biology of Human Gene Therapeutics. Molecular and Cell Biology of Human Diseases Series, vol 20. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-0547-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-0547-7_3

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4242-0

  • Online ISBN: 978-94-011-0547-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics