Skip to main content
Log in

Viral vectors for gene therapy: Current state and clinical perspectives

  • Review
  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Gene therapy is the straightforward approach for the application of recent advances in molecular biology into clinical practice. One of the major obstacles in the development of gene therapy is the delivery of the effector to and into the target cell. Unfortunately, most methods commonly used in laboratory practice are poorly suited for clinical use. Viral vectors are one of the most promising methods for gene therapy delivery. Millions of years of evolution of viruses have resulted in the development of various molecular mechanisms for entry into cells, long-term survival within cells, and activation, inhibition, or modification of the host defense mechanisms at all levels. The relatively simple organization of viruses, small genome size, and evolutionary plasticity allow modifying them to create effective instruments for gene therapy approaches. This review summarizes the latest trends in the development of gene therapy, in particular, various aspects and prospects of the development of clinical products based on viral delivery systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AAV:

adeno-associated virus

GT:

gene therapy

HIV:

human immunodeficiency virus

HSC:

hematopoietic stem cells

MLV:

murine leukemia virus

MVA:

modified vaccinia virus Ankara

References

  1. Rudchenko, M. N., and Zamyatnin, A. A. (2015) Prospects for using self-assembled nucleic acid structures, Biochemistry (Moscow), 80, 391–399.

    Article  CAS  Google Scholar 

  2. Benenson, Y., Gil, B., Ben-Dor, U., Adar, R., and Shapiro, E. (2004) An autonomous molecular computer for logical control of gene expression, Nature, 429, 423–429.

    Article  CAS  PubMed  Google Scholar 

  3. Kahan-Hanum, M., Douek, Y., Adar, R., and Shapiro, E. (2013) A library of programmable DNAzymes that operate in a cellular environment, Sci. Rep., 3, 1535.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Jinek, M., Chylinski, K., Fonfara, I., Hauer, M., Doudna, J. A., and Charpentier, E. (2012) A programmable dualRNA-guided DNA endonuclease in adaptive bacterial immunity, Science, 337, 816–821.

    Article  CAS  PubMed  Google Scholar 

  5. Savitskaya, E. E., Musharova, O. S., and Severinov, K. V. (2016) Diversity of mechanisms of CRISPR-Cas systems of adaptiv immunity of procaryotes and possibilities to use them in biotechnology, Biochemistry (Moscow), 81, 653–661.

    Article  Google Scholar 

  6. Drake, C. G., Lipson, E. J., and Brahmer, J. R. (2014) Breathing new life into immunotherapy: review of melanoma, lung and kidney cancer, Nat. Rev. Clin. Oncol., 11, 24–37.

    Article  CAS  PubMed  Google Scholar 

  7. Mellman, I., Coukos, G., and Dranoff, G. (2011) Cancer immunotherapy comes of age, Nature, 480, 480–489.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Quantin, B., Perricaudet, L. D., Tajbakhsh, S., and Mandel, J. L. (1992) Adenovirus as an expression vector in muscle cells in vivo, Proc. Natl. Acad. Sci. USA, 89, 2581–2584.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Giacca, M. (2010) Gene Therapy, Springer-Verlag, Italy.

    Book  Google Scholar 

  10. Tsai, S. Y., Schillinger, K., and Ye, X. (2000) Adenovirusmediated transfer of regulable gene expression, Curr. Opin. Mol. Ther., 2, 515–523.

    CAS  PubMed  Google Scholar 

  11. Lyons, M., Onion, D., Green, N. K., Aslan, K., Rajaratnam, R., Bazan-Peregrino, M., Phipps, S., Hale, S., Mautner, V., Seymour, L. W., and Fisher, K. D. (2006) Adenovirus type 5 interactions with human blood cells may compromise systemic delivery, Mol. Ther., 14, 118–128.

    Article  CAS  PubMed  Google Scholar 

  12. Hendrickx, R., Stichling, N., Koelen, J., Kuryk, L., Lipiec, A., and Greber, U. F. (2014) Innate immunity to adenovirus, Hum. Gene Ther., 25, 265–284.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Raper, S. E., Chirmule, N., Lee, F. S., Wivel, N. A., Bagg, A., Gao, G. P., Wilson, J. M., and Batshaw, M. L. (2003) Fatal systemic inflammatory response syndrome in a ornithine transcarbamylase deficient patient following adenoviral gene transfer, Mol. Genet. Metab., 80, 148–158.

    Article  CAS  PubMed  Google Scholar 

  14. Nwanegbo, E., Vardas, E., Gao, W., Whittle, H., Sun, H., Rowe, D., Robbins, P. D., and Gambotto, A. (2004) Prevalence of neutralizing antibodies to adenoviral serotypes 5 and 35 in the adult populations of The Gambia, South Africa, and the United States, Clin. Diagn. Lab. Immunol., 11, 351–357.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Roy, S., Clawson, D. S., Lavrukhin, O., Sandhu, A., Miller, J., and Wilson, J. M. (2007) Rescue of chimeric adenoviral vectors to expand the serotype repertoire, J. Virol. Methods, 141, 14–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Blaese, R. M., Culver, K. W., Miller, A. D., Carter, C. S., Fleisher, T., Clerici, M., Shearer, G., Chang, L., Chiang, Y., Tolstoshev, P., Greenblatt, J. J., Rosenberg, S. A., Klein, H., Berger, M., Mullen, C. A., Ramsey, W. J., Muul, L., Morgan, R. A., and Anderson, W. F. (1995) T-lymphocytedirected gene therapy for ADA-SCID: initial trial results after 4 years, Science, 270, 475–480.

    Article  CAS  PubMed  Google Scholar 

  17. Bordignon, C., Notarangelo, L. D., Nobili, N., Ferrari, G., Casorati, G., Panina, P., Mazzolari, E., Maggioni, D., Rossi, C., Servida, P., Ugazio, A. G., and Mavilio, F. (1995) Gene therapy in peripheral blood lymphocytes and bone marrow for ADA-immunodeficient patients, Science, 270, 470–475.

    Article  CAS  PubMed  Google Scholar 

  18. Kohn, D. B., Weinberg, K. I., Nolta, J. A., Heiss, L. N., Lenarsky, C., Crooks, G. M., Hanley, M. E., Annett, G., Brooks, J. S., El-Khoureiy, A., Lawrence, K., Wells, D., Moen, R. C., Bastian, J., Williams-Herman, D. E., Elder, M., Wara, D., Bowen, T., Hershfield, M. S., Mullen, C. A., Blaese, R. M., and Parkman, R. (1995) Engraftment of gene-modified umbilical cord blood cells in neonates with adenosine deaminase deficiency, Nat. Med., 1, 1017–1023.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Cattoglio, C., Facchini, G., Sartori, D., Antonelli, A., Miccio, A., Cassani, B., Schmidt, M., Von Kalle, C., Howe, S., Thrasher, A. J., Aiuti, A., Ferrari, G., Recchia, A., and Mavilio, F. (2007) Hot spots of retroviral integration in human CD34+ hematopoietic cells, Blood, 110, 1770–1778.

    Article  CAS  PubMed  Google Scholar 

  20. Cattoglio, C., Pellin, D., Rizzi, E., Maruggi, G., Corti, G., Miselli, F., Sartori, D., Guffanti, A., Di Serio, C., Ambrosi, A., De Bellis, G., and Mavilio, F. (2010) Highdefinition mapping of retroviral integration sites identifies active regulatory elements in human multipotent hematopoietic progenitors, Blood, 116, 5507–5517.

    Article  CAS  PubMed  Google Scholar 

  21. Wu, X., Li, Y., Crise, B., and Burgess, S. M. (2003) Transcription start regions in the human genome are favored targets for MLV integration, Science, 300, 1749–1751.

    Article  CAS  PubMed  Google Scholar 

  22. Hacein-Bey-Abina, S., Garrigue, A., Wang, G. P., Soulier, J., Lim, A., Morillon, E., Clappier, E., Caccavelli, L., Delabesse, E., Beldjord, K., Asnafi, V., Macintyre, E., Dal Cortivo, L., Radford, I., Brousse, N., Sigaux, F., Moshous, D., Hauer, J., Borkhardt, A., Belohradsky, B. H., Wintergerst, U., Velez, M. C., Leiva, L., Sorensen, R., Wulffraat, N., Blanche, S., Bushman, F. D., Fischer, A., and Cavazzana-Calvo, M. (2008) Insertional oncogenesis in 4 patients after retrovirus-mediated gene therapy of SCID-X1, J. Clin. Invest., 118, 3132–3142.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Montini, E., Cesana, D., Schmidt, M., Sanvito, F., Ponzoni, M., Bartholomae, C., Sergi Sergi, L., Benedicenti, F., Ambrosi, A., Di Serio, C., Doglioni, C., Von Kalle, C., and Naldini, L. (2006) Hematopoietic stem cell gene transfer in a tumor-prone mouse model uncovers low genotoxicity of lentiviral vector integration, Nat. Biotechnol., 24, 687–696.

    Article  CAS  PubMed  Google Scholar 

  24. Naldini, L., Blomer, U., Gallay, P., Ory, D., Mulligan, R., Gage, F. H., Verma, I. M., and Trono, D. (1996) In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector, Science, 272, 263–267.

    Article  CAS  PubMed  Google Scholar 

  25. Poeschla, E., Corbeau, P., and Wong-Staal, F. (1996) Development of HIV vectors for anti-HIV gene therapy, Proc. Natl. Acad. Sci. USA, 93, 11395–11399.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Iwakuma, T., Cui, Y., and Chang, L. J. (1999) Self-inactivating lentiviral vectors with U3 and U5 modifications, Virology, 261, 120–132.

    Article  CAS  PubMed  Google Scholar 

  27. Halbert, C. L., Miller, A. D., McNamara, S., Emerson, J., Gibson, R. L., Ramsey, B., and Aitken, M. L. (2006) Prevalence of neutralizing antibodies against adeno-associated virus (AAV) types 2, 5, and 6 in cystic fibrosis and normal populations: implications for gene therapy using AAV vectors, Hum. Gene Ther., 17, 440–447.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Tse, L. V., Moller-Tank, S., and Asokan, A. (2015) Strategies to circumvent humoral immunity to adenoassociated viral vectors, Expert Opin. Biol. Ther., 15, 845–855.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Rey-Rico, A., and Cucchiarini, M. (2016) Controlled release strategies for rAAV-mediated gene delivery, Acta Biomater., 29, 1–10.

    Article  CAS  PubMed  Google Scholar 

  30. Kotterman, M. A., and Schaffer, D. V. (2014) Engineering adeno-associated viruses for clinical gene therapy, Nat. Rev. Genet., 15, 445–451.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Sanchez-Sampedro, L., Perdiguero, B., Mejias-Perez, E., Garcia-Arriaza, J., Di Pilato, M., and Esteban, M. (2015) The evolution of poxvirus vaccines, Viruses, 7, 1726–1803.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Hata, Y., Etoh, T., Inomata, M., Shiraishi, N., Nishizono, A., and Kitano, S. (2008) Efficacy of oncolytic reovirus against human breast cancer cells, Oncol. Rep., 19, 1395–1398.

    CAS  PubMed  Google Scholar 

  33. Goetz, C., Everson, R. G., Zhang, L. C., and Gromeier, M. (2010) MAPK signal-integrating kinase controls capindependent translation and cell type-specific cytotoxicity of an oncolytic poliovirus, Mol. Ther., 18, 1937–1946.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Borrego-Diaz, E., Mathew, R., Hawkinson, D., Esfandyari, T., Liu, Z., Lee, P. W., and Farassati, F. (2012) Pro-oncogenic cell signaling machinery as a target for oncolytic viruses, Curr. Pharm. Biotechnol., 13, 1742–1749.

    Article  CAS  PubMed  Google Scholar 

  35. Esfandyari, T., Tefferi, A., Szmidt, A., Alain, T., Zwolak, P., Lasho, T., Lee, P. W., and Farassati, F. (2009) Transcription factors down-stream of Ras as molecular indicators for targeting malignancies with oncolytic herpes virus, Mol. Oncol., 3, 464–468.

    Article  CAS  PubMed  Google Scholar 

  36. Kantor, B., Bailey, R. M., Wimberly, K., Kalburgi, S. N., and Gray, S. J. (2014) Methods for gene transfer to the central nervous system, Adv. Genet., 87, 125–197.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Alsaggar, M., and Liu, D. (2015) Physical methods for gene transfer, Adv. Genet., 89, 1–24.

    Article  PubMed  Google Scholar 

  38. Sergeeva, O. V., Koteliansky, V. E., and Zatsepin, T. S. (2016) Using mRNAs for therapy–achivements and perspectives, Biochemistry (Moscow), 81, 709–722.

    Google Scholar 

  39. Li, B., Luo, X., and Dong, Y. (2016) Effects of chemically modified messenger RNA on protein expression, Bioconj. Chem., 27, 849–853.

    Article  CAS  Google Scholar 

  40. Wade, N. (1981) Gene therapy caught in more entanglements, Science, 212, 24–25.

    Article  CAS  PubMed  Google Scholar 

  41. Marshall, E. (1999) Gene therapy death prompts review of adenovirus vector, Science, 286, 2244–2245.

    Article  CAS  PubMed  Google Scholar 

  42. Yu, W., and Fang, H. (2007) Clinical trials with oncolytic adenovirus in China, Curr. Cancer Drug Targets, 7, 141–148.

    Article  PubMed  Google Scholar 

  43. Mironov, A. N., Vasiliev, A. N., Goryachev, D. V., Gavrishina, E. V., and Niyasov, R. R. (2014) Medicines for advanced therapies: scientific approaches to validate quality, safety and efficacy, Remedium, Nos. 7-8, 16–24.

    Google Scholar 

  44. Galli, M. C., and Serabian, M. (2014) Regulatory aspects of gene therapy and cell therapy products: a global perspective, Adv. Exp. Med. Biol., 871, 1–221.

    Google Scholar 

  45. Villemejane, J., and Mir, L. M. (2009) Physical methods of nucleic acid transfer: general concepts and applications, Br. J. Pharmacol., 157, 207–219.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. N. Lukashev.

Additional information

Original Russian Text © A. N. Lukashev, A. A. Zamyatnin, Jr., 2016, published in Biokhimiya, 2016, Vol. 81, No. 7, pp. 926-936.

To whom correspondence should be addressed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lukashev, A.N., Zamyatnin, A.A. Viral vectors for gene therapy: Current state and clinical perspectives. Biochemistry Moscow 81, 700–708 (2016). https://doi.org/10.1134/S0006297916070063

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297916070063

Keywords

Navigation