Skip to main content

Antibiotic resistance markers for plant transformation

  • Chapter
Plant Molecular Biology Manual

Abstract

Dominant selectable markers are an integral part of plant transformation strategies. A large number of such selectable marker genes have become available: antibiotic, antimetabolite, and herbicide resistance genes, hormone biosynthetic genes, and recently also genes conferring resistance to toxic levels of amino acids or amino acid analogs [19]. The usefulness of a particular resistance marker depends upon the characteristics of the selection agent, the resistance gene, and the plant material. The selection agent should fully inhibit growth of untransformed plant cells; however, the influence exerted by the dying, untransformed cells on the transformed cells should be minimal. Therefore, the lowest concentration of the selection agent that suppresses growth of untransformed cells is generally used. The sensitivity of plant cells to the selection agent depends upon the genotype, the explant type, the developmental stage, and the tissue culture conditions and should, therefore, be determined under the actual conditions of the transformation and regeneration process. Finally, the level of resistance also depends upon the transcriptional and translational control signals to which the resistance gene is fused. It may thus be necessary to test several gene constructions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Altmann T, Damm B, Halfter U, Willmitzer L, Morris P-C (1992) Protoplast transformation and methods to create specific mutants in Arabidopsis thaliana. In Koncz C, Chua N-H, Schell J (eds.), Methods in Arabidopsis Research, pp 310–330, World Scientific, Singapore.

    Google Scholar 

  2. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72: 248–254.

    Article  Google Scholar 

  3. Carrer H, Staub JM, Maliga P (1991) Gentamycin resistance in Nicotiana conferred by AAC(3)-I, a narrow substrate specificity acetyltransferase. Plant Mol Biol 17: 301–303.

    Article  Google Scholar 

  4. D’Halluin K, Bonne, E, Bossut M, De Beuckeleer M, Leemans J (1992) Transgenic maize plants by tissue electroporation. Plant Cell 4: 1495–1505.

    Google Scholar 

  5. Datta SK, Peterhans A, Datta K, Potrykus I (1990) Genetically engineered fertile indica-rice recovered from protoplasts. Bio/technology 8: 736–740.

    Article  Google Scholar 

  6. Eichholtz DA, Rogers SG, Horsch RB, Klee HJ, Hayford M, Hoflfmann NL, Bradford SB, Fink C, Flick J, O’Connell KM, Fraley RT (1987) Expression of mouse dihydrofolate reductase gene confers methotrexate resistance in transgenic petunia plants. Somatic Cell Mol Genet 13: 67–76.

    Article  Google Scholar 

  7. Gamborg OL, Miller RA, Ojima K (1968) Nutrient requirements of suspension cultures of soybean root cells. Exp Cell Res 50: 151–158.

    Article  Google Scholar 

  8. Gatignol A, Durand H, Tiraby G (1988) Bleomycin resistance conferred by a drug-binding protein. FEBS Lett 230: 171–175.

    Article  Google Scholar 

  9. Hauptmann RM, Vasil V, Ozias-Atkins P, Tabaeizadeh Z, Rogers SG, Fraley RT, Horsch RB, Vasil IK (1988) Evaluation of selectable markers for obtaining stable transformants in the gramineae. Plant Physiol 86: 602–606.

    Article  Google Scholar 

  10. Hayford MB, Medford JI, Hoffman NL, Rogers SG, Klee HJ (1988) Development of a plant transformation selection system based on expression of genes encoding gentamicin acetyl-transferases. Plant Physiol 86: 1216–1222.

    Article  Google Scholar 

  11. Hille J, Verheggen F, Roelvink P, Franssen H, van Kammen A, Zabel P (1986) Bleomycin resistance: A new dominant selectable marker for plant cell transformation. Plant Mol Biol 7: 171–176.

    Article  Google Scholar 

  12. Jones JDG, Carland FM, Maliga P, Dooner HK (1989) Visual detection of transposition of the maize element Activator (Ac) in tobacco seedlings. Science 244: 204–207.

    Article  Google Scholar 

  13. Kemper E, Grevelding C, Schell J, Masterson R (1992) Improved method for the transformation of Arabidopsis thaliana with chimeric dihydrofolate reductase constructs which confer methotrexate resistance. Plant Cell Reports 11: 118–121.

    Article  Google Scholar 

  14. Maliga P, Svab Z, Harper EC, Jones JDG (1988) Improved expression of streptomycin resistance in plants due to a deletion of the streptomycin phosphotransferase coding sequence. Mol Gen Genet 214: 456–459.

    Article  Google Scholar 

  15. McDonnell RE, Clark RD, Smith WA, Hinchee MA (1987) A simplified method for the detection of neomycin phosphotransferase II activity in transformed plant tissues. Plant Mol Biol Reporter 5: 380–386.

    Article  Google Scholar 

  16. Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15: 473–497.

    Article  Google Scholar 

  17. Nagel RJ, Manners JM, Birch RG (1992) Evaluation of an ELISA assay for rapid detection and quantification of neomycin phosphotransferase II in transgenic plants. Plant Mol Biol Reporter 10: 263–272.

    Article  Google Scholar 

  18. Perez P, Tiraby G, Kallerhoff J, Perret J (1989) Phleomycin resistance as a dominant selectable marker for plant cell transformation. Plant Mol Biol 13: 365–373.

    Article  Google Scholar 

  19. Perl A, Galili S, Shaul O, Ben-Tzvi I, Galili G (1993) Bacterial dihydrodipicolinate synthase and desensitized aspartate kinase: Two novel selectable markers for plant transformation. Bio/technology 11: 715–718.

    Article  Google Scholar 

  20. Platt SG, Yang N-S (1987) Dot assay for neomycin phosphotransferase activity in crude cell extracts. Anal Biochem 162: 529–535.

    Article  Google Scholar 

  21. Reiss B, Sprengel R, Schaller H (1984) Protein fusions with the kanamycin resistance gene from transposon Tn5. EMBO J 3: 3317–3322.

    Google Scholar 

  22. Reiss B, Sprengel R, Will H, Schaller H (1984) A new sensitive method for qualitative and quantitative assay of neomycin phosphotransferase in crude cell extracts. Gene 30: 211–218.

    Article  Google Scholar 

  23. Schreier PH, Seftor EA, Schell J, Bohnert HJ (1985) The use of nuclear-encoded sequences to direct the light-regulated synthesis and transport of a foreign protein into plant chloro-plasts. EMBO J 4: 25–32.

    Google Scholar 

  24. Simonsen CC, Levinson AD (1983) Isolation and expression of an altered mouse dihydrofolate reductase cDNA. Proc Natl Acad Sci USA 80: 2495–2499.

    Article  Google Scholar 

  25. Staebell M, Tomes D, Weissinger A, Maddock S, Marsh W, Huffman G, Bauer R, Ross M, Howard J (1990) A quantitative assay for neomycin phosphotransferase activity in plants. Anal Biochem 185: 319–323.

    Article  Google Scholar 

  26. Svab Z, Maliga P (1993) High-frequency plastid transformation in tobacco by selection for a chimeric aadA gene. Proc Natl Acad Sci USA 90: 913–917.

    Article  Google Scholar 

  27. Svab Z, Harper EC, Jones JDG, Maliga P (1990) Aminoglycoside-3 ″-adenyltransferase confers resistance to spectinomycin and streptomycin in Nicotiana tabacun. Plant Mol Biol 14: 197–205.

    Article  Google Scholar 

  28. Van den Broeck G, Timko MP, Kausch AP, Cashmore AR, Van Montagu M, Herrera-Estrella L (1985) Targeting of a foreign protein to chloroplasts by fusion to the transit peptide of ribulose 1,5-bisphosphate carboxylase. Nature 313: 358–363.

    Article  Google Scholar 

  29. Van den Elzen PJM, Townsend J, Lee KY, Bedbrook JR (1985) A chimaeric hygromycin resistance gene as a selectable marker in plant cells. Plant Mol Biol 5: 299–302.

    Article  Google Scholar 

  30. Van Lijsebettens M, Vanderhaeghen R, Van Montagu M (1991) Insertional mutagenesis in Arabidopsis thaliana:Isolation of a T-DNA-linked mutation that alters leaf morphology. Theor Appl Genet 81: 277–284.

    Article  Google Scholar 

  31. Waldron C, Murphy EB, Roberts JL, Gustafson GD, Armour SL, Malcolm SK (1985) Resistance to hygromycin B: A new marker for plant transformation studies. Plant Mol Biol 5: 103–108.

    Article  Google Scholar 

  32. Yenofsky RL, Fine M, Pellow JW (1990) A mutant neomycin phosphotransferase II gene reduces the resistance of transformants to antibiotic selection pressure. Proc Natl Acad Sci USA 87: 3435–3439.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Angenon, G., Dillen, W., Van Montagu, M. (1994). Antibiotic resistance markers for plant transformation. In: Gelvin, S.B., Schilperoort, R.A. (eds) Plant Molecular Biology Manual. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-0511-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-0511-8_9

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-011-7654-5

  • Online ISBN: 978-94-011-0511-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics