Skip to main content

The frozen-field approximation and the Ginzburg-Landau equations of superconductivity

  • Chapter
Practical Asymptotics
  • 257 Accesses

Abstract

The Ginzburg-Landau (GL) equations of superconductivity provide a computational model for the study of magnetic flux vortices in type-II superconductors. In this article it is shown through numerical examples and rigorous mathematical analysis that the GL model reduces to the frozen-field model when the charge of the Cooper pairs (the superconducting charge carriers) goes to zero while the applied field stays near the upper critical field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. D.W. Braun, G.W. Crabtree, H.G. Kaper, A.E. Koshelev, G.K. Leaf, D.M. Levine and V.M. Vinokur, Structure of a moving vortex lattice. Phys. Rev. Lett. 76 (1996) 831–834.

    Article  Google Scholar 

  2. G.W. Crabtree, D.O. Gunter, H.G. Kaper, A.E. Koshelev, G.K. Leaf and V.M. Vinokur, Numerical solution of driven vortex systems. Phys. Rev. B 61 (2000) 1446–1455.

    Article  Google Scholar 

  3. I. Aranson and V. Vinokur, Surface instabilities and plastic deformation of vortex lattices. Phys. Rev. Lett. 77 (1996) 3208–3211.

    Article  Google Scholar 

  4. M. Tinkham, Introduction to Superconductivity (2nd ed.). New York: McGraw-Hill (1996) xxi+454 pp.

    Google Scholar 

  5. V.L. Ginzburg and L.D. Landau, On the theory of superconductivity. Zh. Eksp. Teor. Fiz. (USSR) 20 (1950) 1064–1082; Engl, transl, in: D. ter Haar, L.D. Landau; Men of Physics (Vol.1). Oxford: Pergamon Press (1965) pp. 138–167.

    Google Scholar 

  6. Q. Du, M.D. Gunzburger and J.S. Peterson, Analysis and approximation of the Ginzburg-Landau model of superconductivity. SIAM Rev. 34 (1992) 54–81.

    Article  MathSciNet  MATH  Google Scholar 

  7. Q. Du, Global existence and uniqueness of solutions of the time-dependent Ginzburg-Landau model for superconductivity. Appl. Anal. 53 (1994) 1–18.

    Article  MathSciNet  MATH  Google Scholar 

  8. Q. Tang and S. Wang, Time-dependent Ginzburg-Landau equations of superconductivity. Physica D 88 (1995) 139–166.

    Article  MathSciNet  MATH  Google Scholar 

  9. J. Fleckinger-Pellé, H.G. Kaper and P. Takáč, Dynamics of the Ginzburg-Landau equations of superconductivity. Nonlin. Anal.: Theory, Methods & Applic. 32 (1998) 647–665.

    Article  MATH  Google Scholar 

  10. Q. Du and P. Gray, High-kappa limits of the time-dependent Ginzburg-Landau model. SIAM J. Appl. Math. 56(1996) 1060–1093.

    Article  MathSciNet  MATH  Google Scholar 

  11. A. Schmid, A time dependent Ginzburg-Landau equation and its application to a problem of resistivity in the mixed state. Phys. Kondens. Materie 5 (1966) 302–317.

    Google Scholar 

  12. L.P. Gor’kov and G.M. Eliashberg, Generalizations of the Ginzburg-Landau equations for non-stationary problems in the case of alloys with paramagnetic impurities. Zh. Eksp. Teor. Fiz. 54 612426 (1968); Soviet Phys.-JETP 21 (1968) 328–334.

    Google Scholar 

  13. L.P. Gor’kov and N. Kopnin, Vortex motion and resistivity of type-II superconductors in a magnetic field. Soviet Phys. — Usp. 18(1976) 496–516.

    Article  Google Scholar 

  14. V.L. Ginzburg, On the destruction and the onset of superconductivity in a magnetic field. Soviet Phys. — JETP 34(7) (1958) 78–87.

    Google Scholar 

  15. S.J. Chapman, Superheating field of type-II superconductors. SIAM J. Appl. Math. 55 (1995) 1233–1258.

    Article  MathSciNet  MATH  Google Scholar 

  16. V Georgescu, Some boundary value problems for differential forms on compact Riemannian manifolds. Ann. Mat. Pura Appl. 122(4) (1979) 159–198.

    Article  MathSciNet  MATH  Google Scholar 

  17. D. Henry, Geometric Theory of Semilinear Parabolic Equations. Lecture Notes in Mathematics, Vol. 840. New York: Springer-Verlag (1981) 348 pp.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Nordborg, H., Kaper, H.G. (2001). The frozen-field approximation and the Ginzburg-Landau equations of superconductivity. In: Kuiken, H.K. (eds) Practical Asymptotics. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0698-9_12

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0698-9_12

  • Received:

  • Accepted:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-3827-0

  • Online ISBN: 978-94-010-0698-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics