Skip to main content
Log in

Modeling Superconductor SFN-Structures Using the Finite Element Method

  • NUMERICAL METHODS
  • Published:
Differential Equations Aims and scope Submit manuscript

Abstract

We consider the problem of mathematical modeling of the current distribution in Josephson structures based on semiclassical equations of the microscopic theory of superconductivity (the Usadel equations). These equations are a system of quasilinear elliptic equations for Green’s functions \(\Phi _\omega (r)\) and \(G_\omega (r) \) and the pairing potential \(\Delta (r) \), which is determined from the equation of self-consistency by summation of the functions \(\Phi _\omega (r)\) over the frequencies \(\omega \). To solve the quasilinear equations, we propose a special mixed finite element method, and to solve the self-consistency equations, we apply the successive approximation method and Anderson’s convergence acceleration algorithm. Results of calculations are provided for a structure with a wedge-shaped ferromagnetic layer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Soloviev, I.I., Klenov, N.V., Bakurskiy, S.V., Kupriyanov, M.Yu., Gudkov, A.L., and Sidorenko, A.S., Beyond Moore’s technologies: operation principles of a superconductor alternative, Beilstein J. Nanotechnol., 2017, vol. 8, p. 2689.

    Article  Google Scholar 

  2. Eschrig, M., Spin-polarized supercurrents for spintronics: a review of current progress, Rep. Progr. Phys., 2015, vol. 78, p. 104501.

    Article  Google Scholar 

  3. Linder, J. and Robinson, J.W.A., Superconducting spintronics, Nature Phys., 2015, vol. 11, p. 307.

    Article  Google Scholar 

  4. Blamire, M.G. and Robinson, J.W.A., The interface between superconductivity and magnetism: understanding and device prospects, J. Phys. Condens. Matter, 2014, vol. 26, p. 453201.

    Article  Google Scholar 

  5. Baek, B., Rippard, W.H., Benz, S.P., Russek, S.E., and Dresselhaus, P.D., Hybrid superconducting-magnetic memory device using competing order parameters, Nature Commun., 2014, vol. 5, p. 3888.

    Article  Google Scholar 

  6. Gingrich, E., Niedzielski, B.M., Glick, J.A., Wang, Y., Miller, D., Loloee, R., Pratt, W. Jr., and Birge, N.O., Controllable \(0-\pi \) Josephson junctions containing a ferromagnetic spin valve, Nature Phys., 2016, vol. 12, p. 564.

    Article  Google Scholar 

  7. Iovan, A., Golod, T., and Krasnov, V.M., Controllable generation of a spin-triplet supercurrent in a Josephson spin valve, Phys. Rev. B, 2014, vol. 90, p. 134514.

    Article  Google Scholar 

  8. Alidoust, M. and Halterman, K., Spin-controlled coexistence of \(0 \) and \(\pi \) states in Josephson junctions, Phys. Rev. B, 2014, vol. 89, p. 195111.

    Article  Google Scholar 

  9. Ouassou, J.A. and Linder, J., Spin-switch Josephson junctions with magnetically tunable \(\sin (\delta \varphi /n) \) current-phase relation, Phys. Rev. B, 2017, vol. 96, p. 064516.

    Article  Google Scholar 

  10. Larkin, T.I., Bolginov, V.V., Stolyarov, V.S., Ryazanov, V.V., Vernik, I.V., Tolpygo, S.K., and Mukhanov, O.A., Ferromagnetic Josephson switching device with high characteristic voltage, Appl. Phys. Lett., 2012, vol. 100, p. 222601.

    Article  Google Scholar 

  11. Bakurskiy, S.V., Klenov, N.V., Soloviev, I.I., Kupriyanov, M.Yu., and Golubov, A.A., Theory of supercurrent transport in SIsFS Josephson junctions, Phys. Rev. B, 2013, vol. 88, p. 144519.

    Article  Google Scholar 

  12. Vernik, I.V., Bol’ginov, V.V., Bakurskiy, S.V., Golubov, A.A., Kupriyanov, M.Yu., Ryazanov, V.V., and Mukhanov, O.A., Theoretical model of superconducting spintronic SIsFS devices, IEEE Trans. Appl. Supercond., 2013, vol. 23, p. 1701208.

    Article  Google Scholar 

  13. Bakurskiy, S.V., Klenov, N.V., Soloviev, I.I., Bol’ginov, V.V., Ryazanov, V.V., Vernik, I.I., Mukhanov, O.A., Kupriyanov, M.Yu., and Golubov, A.A., Theoretical model of superconducting spintronic SIsFS devices, Appl. Phys. Lett., 2013, vol. 102, p. 192603.

    Article  Google Scholar 

  14. Bakurskiy, S.V., Klenov, N.V., Soloviev, I.I., Kupriyanov, Yu.M., and Golubov, A.A., Superconducting phase domains for memory applications, Appl. Phys. Lett., 2016, vol. 10, p. 042602.

    Article  Google Scholar 

  15. Bakurskiy, S.V., Filippov, V.I., Ruzhickiy, V.I., Klenov, N.V., Soloviev, I.I., Kupriyanov, Yu.M., and Golubov, A.A., Current-phase relations in SIsFS junctions in the vicinity of \(0-\pi \) transition, Phys. Rev. B, 2017, vol. 95, p. 094522.

    Article  Google Scholar 

  16. Bakurskiy, S.V., Klenov, N.V., Soloviev, I.I., Pugach, N.G., Kupriyanov, M.Yu., and Golubov, A.A., Protected \(0-\pi \) states in SIsFS junctions for Josephson memory and logic, Appl. Phys. Lett., 2018, vol. 113, p. 082602.

    Article  Google Scholar 

  17. Bakurskiy, S.V., Klenov, N.V., Karminskaya, T.Yu., Kupriyanov, M.Yu., and Golubov, A.A., Josephson \(\varphi \) junctions based on structures with complex normal/ferromagnetic bilayer, Supercond. Sci. Technol., 2012, vol. 26, p. 015005.

    Article  Google Scholar 

  18. Usadel, K.D., Generalized diffusion equation for superconducting alloys,Phys. Rev. Lett., 1970, vol. 25, p. 507.

    Article  Google Scholar 

  19. Boffi, D., Brezzi, F., and Fortin, M., Mixed Finite Element Methods and Applications. Springer Series in Computational Mathematics, Berlin–Heidelberg: Springer, 2013.

    Book  Google Scholar 

  20. Walker, H.F. and Ni, P., Anderson acceleration for fixed-point iterations,SIAM J. Numer. Anal., 2011, vol. 49, p. 1715.

    Article  MathSciNet  Google Scholar 

  21. Toth, A. and Kelley, C.T., Convergence analysis for anderson acceleration,SIAM J. Numer. Anal., 2015, vol. 53, p. 805.

    Article  MathSciNet  Google Scholar 

  22. https://freefem.org/

  23. Givoli, D., Finite element modeling of thin layers, Comput. Model. Eng. Sci., 2004, vol. 5, no. 6, p. 497.

    Google Scholar 

  24. Kwak, D.Y., Seungwoo, L., and Yunkyong, H.A., New finite element for interface problems having Robin type jump, Int. J. Numer. Anal. Model., 2017, vol. 14, no. 4–5, p. 532.

    MathSciNet  MATH  Google Scholar 

  25. Carraro, T. and Wetterauer, S., On the implementation of the extended Finite Element Method (XFEM) for interface problems, Arch. Numer. Software, 2016, vol. 4, no. 2, p. 1.

    Google Scholar 

  26. Hecht, F., New development in FreeFem++, J. Numer. Math., 2012, vol. 20, p. 251.

    Article  MathSciNet  Google Scholar 

  27. https://www.ljll.math.upmc.fr/lehyaric/ffcs

  28. Davis, T., Algorithm 832: UMFPACK, an unsymmetric-pattern multifrontal method, ACM Trans. Math. Software, 2004, vol. 30, no. 2, p. 196.

    Article  MathSciNet  Google Scholar 

  29. Kupriyanov, M.Yu., Likharev, K.K., and Lukichev, V.F., Influence of effective electron interaction on the critical current of Josephson weak links, Sov. Phys. JETP, 1982, vol. 56, no. 1, pp. 235–240.

    Google Scholar 

  30. Zhou, H., Alexander, D., and Lange, K., A quasi-Newton acceleration for high-dimensional optimization algorithms, Stat. Comput., 2011, vol. 21, no. 2, pp. 261–273.

    Article  MathSciNet  Google Scholar 

Download references

Funding

This work was supported by the Russian Science Foundation, project no. 18-72-10118).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M. M. Khapaev, M. Yu. Kupriyanov, S. V. Bakurskiy, N. V. Klenov or I. I. Soloviev.

Additional information

Translated by V. Potapchouck

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khapaev, M.M., Kupriyanov, M.Y., Bakurskiy, S.V. et al. Modeling Superconductor SFN-Structures Using the Finite Element Method. Diff Equat 56, 959–967 (2020). https://doi.org/10.1134/S0012266120070149

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0012266120070149

Navigation