Advertisement

On Modeling Dry Deposition of Long-Lived and Chemically Reactive Species over Heterogeneous Terrain

  • G. Tetzlaff
  • R. Dlugi
  • K. Friedrich
  • G. Gross
  • D. Hinneburg
  • U. Pahl
  • M. Zelger
  • N. Mölders
Chapter
  • 96 Downloads

Abstract

An explicit multi-layer subgrid-scheme was developed for a meso-γ/β-scale model to consider subgrid-scale surface heterogeneity, dry deposition, biogenic and anthropogenic emission of trace gases. Since dry deposition measurements of highly reactive trace species are scarce we try to evaluate this scheme by heuristic principles. The results of simulations conducted for a 5 × 5 km2 resolution with and without this scheme are evaluated by using results of a model run with 1 × 1 km2 resolution, which is taken as a ‘grand thruth’ and which has the same resolution as the subgrid. The explict multi-layer subgrid scheme provides a similar distribution of dry deposition fluxes as the much more computationally expensive simulation with the 1 × 1 km2 resolution.

Dry deposition fluxes determined from observations give evidence that the explicit multi-layer subgrid scheme which does not require a constant flux approximation for a layer of several decameters leads to an improvement in determining the exchange between the atmosphere and the ground.

Results of simulations with a microscale model show that the inhomogeneity at forest edges leads to an increase of the turbulent transports of up to a factor 4 compared to horizontally homogeneous terrain, which is assumed to be the conditions of the subgrid cells (and which is usually the assumption for the entire grid cell in mesoscale models). Inhomogeneity inside an extended stand of trees causes an overall increase of 5–10% with high local extremes, i.e. such an inhomogeneity results to an underestimation of dry deposition in meso-γ/β-scale models. The effects are most pronounced for a wind direction perpendicular to the forest edge.

Key words

dry deposition mesoscale modeling microscale modeling surface heterogeneity forest edge explicit multi-layer subgrid scheme 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arya, S. P., 1988: Introduction to Micrometeorology, Academic Press, San Diego, p. 303.Google Scholar
  2. Avissar, R. and Pielke, R. A., 1989: A parameterization of heterogeneous land surface for atmospheric numerical models and its impact on regional meteorology, Mon. Wea. Rev. 117, 2113–2136.CrossRefGoogle Scholar
  3. Baer, M. and Nester, K., 1992: Parameterization of trace gas dry deposition velocities for a regional mesoscale diffusion model, Ann. Geophys. 10, 912–923.Google Scholar
  4. Baldocchi, D. D., 1988: A multi-layer model for estimating sulfur dioxide deposition to a deciduous oak forest canopy, Atmos. Environ. 22, 869–884.CrossRefGoogle Scholar
  5. Beier, N., Schroers, H., Müller, D., and Weber, M., 1997: Grenzschichtmeteorologische Untersuchungen zur trockenen Deposition chemisch inerter und reaktiver Luftbeimengungen, BMBF-Abschlussbericht, Meteorol. Inst. München.Google Scholar
  6. Blackadar, A. K., 1962: The vertical distribution of wind and turbulent exchange in a neutral atmosphere, J. Geophys. Res. 67, 3095–3103.CrossRefGoogle Scholar
  7. Bowling, D. R., Delany, A. C., Turnispeed, A. A., Baldocchi, D. D., and Mason, R.K., 1999: Modification of the relaxed eddy accumulation technique to maximize the measured scalar mixing ratio differences in updrafts and downdrafts, J. Geophys. Res. 104D, 9121–9133.CrossRefGoogle Scholar
  8. Brost, R. A., Delany, A. C., and Huebert, B. J., 1988: Numerical modeling of concentrations and fluxes of HNO3, NH3, and NH4NO3 near the surface, J. Geophys. Res. 93, 7137–7152.CrossRefGoogle Scholar
  9. Brunnemann, G., Kins, L., and Dlugi, R., 1996: Physical and chemical characterisation of the atmospheric aerosol: An overview of the measurements during SANA2 campaign at Melpitz, Meteorol. Zeitschr. 5, 245–256.Google Scholar
  10. Businger, J. A., Wyngaard, J. C., Izumi, Y., and Bradley, E. F., 1971: Flux profile relationship in the atmospheric surface layer, J. Atmos. Sci. 28, 181–189.CrossRefGoogle Scholar
  11. Businger, J. A., 1986: Evaluation of the accuracy with which dry deposition can be measured with current micrometeorological techniques, J. Appl. Meteorol. 25, 1100–1124.CrossRefGoogle Scholar
  12. Chang, J. S., Brost, R. A., Isaksen, I. S. A., Madronich, S., Middleton, P., Stockwell, W. R., and Walcek, C. J. 1987: A three dimensional Eulerian acid deposition model: physical concepts and formulation, J. Geophys. Res. 92, 14681–14700.CrossRefGoogle Scholar
  13. Clegg, S. L., Brimblecombe, P., and Wexler, A. S., 1998: Thermodynamic model of the system H+-NH4+-SO42−-NO3-H2O at tropospheric temperatures, J. Phys. Chem. A102, 2147–2165.Google Scholar
  14. Deardorff, J. W., 1978: Efficient prediction of ground surface temperature and moisture with inclusion of a layer of vegetation, J. Geophys. Res. 8(3), 1889–1903.CrossRefGoogle Scholar
  15. Dlugi, R., 1988: Deposition of gaseous and particulate compounds from a profile method, in H. van Dop (ed.), Air Pollution Modelling and its Application, VI. Plenum, pp. 49–60.Google Scholar
  16. Dlugi, R., 1993: Interaction of NOx and VOCs within vegetation, in P. M. Borrell, P. Borrell, T. Cvitas, and W. Seiler (eds), Photo-Oxidants: Precursors and Products, Proceedings of EUROTRAC Symposium’ 92, Academic Publishing, The Hague, pp. 682–688.Google Scholar
  17. Ebel, A., Hass, H., Jakobs, H. J., Laube, M., and Mölders, N., 1994: Simulation of chemical transformation and vertical redistribution of air pollutants in clouds, in Physico-Chemical Behaviour of Atmospheric Pollutants, Proceedings of the Sixth European Symposium, Varese, 18–22 October, pp. 1035–1039.Google Scholar
  18. Eppel, D. P., Kapitza, H., Claussen, M., Jacob, D., Koch, W., Levkov, L., Mengelkamp, H.-T., and Werrmann, N., 1995: The non-hydrostatic mesoscale model GESIMA. Part II: Parameterizations and applications, Contrib. Atmos. Phys. 68, 15–41.Google Scholar
  19. Falls, A. H. and Seinfeld, J. H., 1978: Continued development of kinetic mechanism for photochemical smog, Environ Sci. Technol. 12, 1398–1406.CrossRefGoogle Scholar
  20. Feldmann, H., Hass, H., Memmesheimer, M., and Jakobs, H.-J., 1996: Budgets of atmospheric sulfur for East Germany based on meso-α-scale simulations, Meteorol. Zeitsch. 5, 194–204.Google Scholar
  21. Fitzjarrald, D. R., and Lenschow, D. H., 1983: Mean concentration and flux profiles for chemically reactive species in the atmospheric surface layer, Atmos. Environ. 17, 2505–2512.CrossRefGoogle Scholar
  22. Friedrich, K., Mölders, N., and Tetzlaff, G., 2000: On the influence of surface heterogeneity on the Bowen-ratio: A theoretical case study, Theor. Appl. Clim. 65, 181–196.CrossRefGoogle Scholar
  23. Friedrich, K. and Mölders, N., 2000: On the influence of surface heterogeneity on latent heat-fluxes and stratus properties. Atmos. Res. 54, 59–85.CrossRefGoogle Scholar
  24. Ganzeveld, L. and Lelieveld, J., 1995: Dry deposition parameterization in a chemistry general circulation model and its influence on the distribution of reactive trace gases, J. Geophys. Res. 100D, 1999–2001.Google Scholar
  25. Gao, W., Wesely, M. L., and Lee, I. Y., 1991: A numerical study of the effects of air chemistry on fluxes of NO, NO2, and O3 near the surface, J. Geophys. Res. 96D, 18761–18769.CrossRefGoogle Scholar
  26. Gross, G., 1993: Numerical Simulations of Canopy Flows, Springer, Berlin.CrossRefGoogle Scholar
  27. Hanson, P. J. and Lindberg, S. E., 1991: Dry deposition of reactive nitrogen componds: A review of leaf, canopy and non-foliar measurements, Atmos. Environ. 25A, 1615–1634.Google Scholar
  28. Hass, H., Jacobs, H. J., and Memmesheimer, M., 1995: Analysis of a regional model (EURAD) near-surface gas concentration predictions using observations from networks, Meteorol. Atmos. Phys. 57, 173–200.CrossRefGoogle Scholar
  29. Hicks, B. B., Baldocchi, D. D., Meyers, T. P., Hosker, J. R. P., and Matt, D. R., 1987: Preliminary multiple resistance routine for deriving dry deposition velocities from measured quantities, Water Air Soil Pollut. 36, 311–330.CrossRefGoogle Scholar
  30. Hinneburg, D. and Mölders, N., 1999: A mesoscale atmospheric model combining meteorology, chemistry, biology and heterogeneity, in A. Raabe, K. Arnold, and J. Heintzenberg (eds), Meteorologische Arbeiten aus Leipzig (IV), Wiss. Mitt. Leipzig 12, pp. 44–58.Google Scholar
  31. Hinneburg, D. and Mölders, N., 2000: Dry deposition by an atmospheric model with horizontal subgrid, in K. Arnold and A. Raabe (eds), Meteorologische Arbeiten aus Leipzig (V), Wiss. Mitt. Leipzig 17, pp. 18–28.Google Scholar
  32. Hinneburg, D., 2001: A mesoscale atmospheric model with horizontal subgrid for chemical transport, Phys. Chem. Earth 26, 111–115.CrossRefGoogle Scholar
  33. Hinneburg, D., Knoth, O., Mölders, N., Münzenberg, A., and Wolke, R., 2001: Subgrid-modelling of dry deposition, in W. Seiler et al. (eds), The Proceedings of the EUROTRAC Symposium 2000, VITpress, Southampton, in press.Google Scholar
  34. Inclan, M., Forkel, R., Dlugi, R., and Stull, R., 1996: Application of transilient turbulent theory to study interactions between the atmospheric boundary layer and forest canopies, Boundary-Layer Meteorol. 79, 315–344.CrossRefGoogle Scholar
  35. Inoue, K., 1963: On the turbulent structure of airflow within crop canopies, J. Meteor. Soc. Jap. 11, 18–22.Google Scholar
  36. John, C., 1999: Emissionen von Luftverunreinigungen aus dem Straßenverkehr in hoher räumlicher und zeitlicher Auflösung — Untersuchungen von Emissionsszenarien am Beispiel Baden-Würtembergs, IER Research Reports, Ph.D. thesis, p. 214, in German.Google Scholar
  37. Kapitza, H. and Eppel, D. R., 1992: The non-hydrostatic mesoscale model GESIMA. Part I: Dynamical equations and tests. Contr. Phys. Atmos. 65, 129–146.Google Scholar
  38. Kramm, G., 1989: A numerical model to determine dry deposition of atmospheric trace gases, Boundary-Layer Meteorol. 48, 157–176.CrossRefGoogle Scholar
  39. Kramm, G. and Dlugi, R., 1994: Modelling of the vertical fluxes of nitric acid, ammonia, and ammonium nitrate, J. Atmos. Chem. 18, 319–357.CrossRefGoogle Scholar
  40. Kramm, G., Dlugi, R., Mölders, N., and Müller, H., 1994: Numerical investigations of the dry deposition of reactive trace gases, in J. M. Baldasano, C. A. Brebbia, H. Power, and P. Zannetti (eds), Air Pollution II Vol. 1: Computer Simulation, Computational Mechanics Publications, Southampton, Boston, pp. 285–307.Google Scholar
  41. Kramm, G., 1995: Zum Austausch von Ozon und reaktiven Stickstoffverbindungen zwischen Atmosphäre und Biosphäre, Wissenschafts-Verlag Dr. W. Maraun, Frankfurt/Main, Germany.Google Scholar
  42. Kramm, G., Dlugi, R., Dollard, G. J., Foken, T., Mölders, N., Müller, H., Seiler, W., and Sievering, FL: 1995, On the dry deposition of ozone and reactive nitrogen compounds, Atmos. Environ. 29, 3209–3231.CrossRefGoogle Scholar
  43. Kramm, G. and Mölders, N., 1996: Investigations on the exchange of water and reactive trace constituents under consideration of various aspects of heterogeneity, in P. M. Borrell, P. Borrell, T. Cvitas, K. Kelly, and W. Seiler (eds.), The Proceedings of the EUROTRAC Symposium’ 96, Computational Mechanics Publications, Southampton, pp. 79–84.Google Scholar
  44. Kramm, G., Beier, N., Foken, T., Müller, H., Schröder, P., and Seiler, W., 1996: A SVAT scheme for NO, NO2, and O3 — model description. Meteorol. Atmos. Phys. 61, 89–106.CrossRefGoogle Scholar
  45. Kramm, G., Beier, N., Dlugi, R., and Müller, H., 1999: Evaluation of conditional sampling methods, Contrib. Atmos. Phys. 72, 161–172.Google Scholar
  46. Kramm, G. and Meixner, F. X., 2000: On the dispersion of trace species in the atmospheric boundary layer: A re-formulation of the governing equations for the turbulent flow of the compressible atmosphere. Tellus 52A, 500–522.Google Scholar
  47. Kumar, N., Odman, M. T., and Russell, A. G., 1994: Multiscale air quality modeling: Application to southern California, J. Geophys. Res. 99, 5385–5397.CrossRefGoogle Scholar
  48. Lenschow, D. H. and Delany, A. C, 1987: Dry deposition of nitrogen-containing species, Atmos. Environ. 30, 2889–2900.Google Scholar
  49. Mahrt, L., Lenschow, D. H., Sun, J., and Weil, J. C., 1995: Ozone fluxes over patchy cultivated surface, J. Geophys. Res. 100D, 23125–23131.CrossRefGoogle Scholar
  50. McRae, G. J. and Seinfeld, J. H., 1983: Development of a second-generation mathematical model for urban pollution I. Model formulation, Atmos. Environ. 16, 679–696.Google Scholar
  51. McRae, G. J. and Russell, A. G., 1984: Dry deposition of nitrogen-containing species, in B. B. Hicks (ed.), Deposition Both Wet and Dry, Acid Precipitation Series Vol. 4. Butterworth, Boston/London, pp. 153–193.Google Scholar
  52. Mellor, G. L. and Yamada, T., 1974: A hierarchy of turbulence closure models for planetary boundary layers, J. Atmos. Sci. 31, 1791–1806.CrossRefGoogle Scholar
  53. Meng, Z. and Seinfeld, J. H., 1996: Time scales to achieve atmospheric trace gas aerosol equilibrium for voltile species, Atmos. Environ. 30, 2889–2900.CrossRefGoogle Scholar
  54. Meyers, T. and Paw II, K. T., 1986: Testing of a higher-order closure model for modeling airflow within and above plant canopies, Boundary-Layer Meteorol. 37, 297–311.CrossRefGoogle Scholar
  55. Meyers, T. P. and Paw II, K. T., 1987: Modelling the plant canopy micrometeorology with higher-order closure principles, Agric. Forest Meteorol. 41, 143–163.CrossRefGoogle Scholar
  56. Meyers, T. P. and Baldocchi, D. D., 1988: A comparison of models for deriving dry deposition fluxes of O3 and SO2 to a forest canopy, Tellus 40B, 270–284.CrossRefGoogle Scholar
  57. Mölders, N., Raabe, A., and Tetzlaff, G., 1996: A comparison of two strategies on land surface heterogeneity used in a mesoscale β meteorological model, Tellus 48A, 733–749.Google Scholar
  58. Mölders, N., Kramm, G., Laube, M., and Raabe, A., 1997: On the influence of bulk-parameterization schemes of cloud microphysics on the predicted water-cycle relevant quantities — a case study, Meteorol. Zeitschr. 6, 21–32.Google Scholar
  59. Mölders, N., 1998: Landscape changes over a region in East Germany and their impact upon the processes of its atmospheric water-cycle, Meteorol. Atmos. Phys. 68, 79–98.CrossRefGoogle Scholar
  60. Müller, H., Kramm, G., Meixner, F. X., Fowler, D., Dollard, G. J., and Possanzani, M., 1993: Determination of HNO3 dry deposition by modified Bowen ratio and aerodynamic profile techniques, Tellus 45B, 346–367.Google Scholar
  61. Müller, T., 1994: Ermittlung der SO2-und NOx-Emissionen aus stationären Feuerungsanalgen in Baden-Würtemberg in zeitlicher Auflösung, 1ER Research Reports, Ph.D. thesis, p. 142, in German.Google Scholar
  62. Obermeier, A., 1995: Ermittlung und Analyse von Emissionen flüchtiger organischer Verbindungen in Baden-Würtemberg, IER Research Reports, Ph.D. thesis, p. 208, in German.Google Scholar
  63. Oncley, S. P., Delany, A. C., Horst, T. W., and Trans, P., 1993: Verification of flux measurements using relaxed eddy accumulation, Atmos. Technol. A27, 2417–2426.Google Scholar
  64. Orlanski, I., 1975: A rational subdivision of scales for atmospheric processes, Bull. Amer. Meteorol. Soc. 56, 527–530.Google Scholar
  65. Orlanski, I., 1976: A simple boundary condition for unbounded hyperbolic flows, J. Comp. Phys. 21, 251–269.CrossRefGoogle Scholar
  66. Padro, J., Zhang, L., Massman, W. J., and Stocker, D. W., 1995: An application of a dry deposition model including the chemical reactions of NO-NO2-O3, in H. Power, N. Moussiopoulos, C. A. Bredia (eds), Air Pollution III: Engineering and Management, Computational Mechanics Publication, Southhampton, Boston, pp. 93–100.Google Scholar
  67. Pahl, U., 2000: Numerische Simulationen zum Einfluß von Waldbestandsinhomogenitäten auf die Windverhältnisse und die trockene Spurenstoffdeposition, Ber. Inst. Met. Klim. Univ. Hannover 25, Ph.D. thesis, p. 100.Google Scholar
  68. Pleim, J. E., Chang, J. S., and Zhang, K., 1991: A nested grid mesoscale atmospheric chemistry model, J. Geophys. Res. 96, 3065–3084.CrossRefGoogle Scholar
  69. Rinne, H. J. I., Delany, A. C., Greenberg, J. P., and Guenther, A. B., 2000: A true eddy accumulation system for trace gas fluxes, J. Geophys. Res. 105, 24791–24798.CrossRefGoogle Scholar
  70. Ruck, B. and Schmitt, F., 1986: Das Strömungsfeld der Einzelbaumumströmung, Forstwiss. Cen-tralbl. 105, 178–196.CrossRefGoogle Scholar
  71. Seidl, W., Brunnemann, G., Kins, L., Köhler, E., Reußwig, K., and Dlugi, R., 1996: On the composition of aerosol particles and related gas phase species at two sites during SANA2 campaign at Melpitz. Meteorol. Zeitschr. 5, 257–268.Google Scholar
  72. Seinfeld, J. H., 1986: Atmospheric Chemistry and Physics of Air Pollution, Wiley, New York/Chichester/Brisbane/Toronto/Singapore, p. 738.Google Scholar
  73. Seiler, T., Reuder, J., Beyrich, F., and Feldmann, H., 1996: Meteorological conditions during SANAI (Eisdorf) and SANA2 (Melpitz), Meteorol. Zeitschr. 5, 181–193.Google Scholar
  74. Seth, A., Giorgi, F., and Dickinson, R. E., 1994: Simulating fluxes from heterogeneous land surfaces: explicit subgrid method employing the biosphere-atmosphere transfer scheme (BATS), J. Geophys. Res. 99D, 18651–18667.CrossRefGoogle Scholar
  75. Slemr, F. and Seiler, W., 1984: Field measurements of NO and NO2 emissions from fertilized and unfertilized soils, J. Atmos. Chem. 2, 1–14.CrossRefGoogle Scholar
  76. Shaw, R. H. and Schumann, U., 1992: Large-eddy simulation of turbulent flow above and within a forest, Boundary-Layer Meteorol. 61, 47–64.CrossRefGoogle Scholar
  77. Smolarkiewicz, P. K., 1984: A fully multidimensional positive definite advection transport algorithm with small implicit diffusion, J. Comp. Phys. 54, 325–362.CrossRefGoogle Scholar
  78. Smolarkiewicz, P. K. and Clark, T. L., 1986: The multidimensional positive definite advection transport algorithm: Further development and applications. J. Comp. Phys. 67, 396–438.CrossRefGoogle Scholar
  79. Spindler, G., Mölders, N., Hansz, J., Beier, N., and Kramm, G., 1996: Determining the dry deposition of SO2, O3, NO, and NO2 at the SANA core station Melpitz, Meteorol. Zeitschr. 5, 205–220.Google Scholar
  80. Stockwell, W. R., Middleton, P., Chang, J. S., and Tang, X., 1990: The second generation regional acid deposition model, chemical mechanism for regional air quality modeling, J. Geophys. Res. 95, 16343–16367.CrossRefGoogle Scholar
  81. Tetzlaff, G. and Mölders. N., 1997: Beurteilung der Modellierbarkeit des flächenbezogenen Eintrages von Spurenstoffen durch Deposition, in W. v. Hoyningne-Huene and G. Tetzlaff (eds), Sediment und Aerosol, Wiss. Mitt. Leipzig, 6, 99–144.Google Scholar
  82. Trepte, S., 1998: Simulation innerstädtischer Konzentrationsfelder mit einem mikroskaligen Chemie-Transport-Modell, Shaker Verlag, Aachen, p. 111, in German.Google Scholar
  83. Walcek, C. J., Brost, R. A., and Chang, J. S., 1986: SO2, sulfat and HNO3 deposition velocities computed using regional landuse and meteorological data, Atmos. Environ. 20, 949–964.CrossRefGoogle Scholar
  84. Wesely, M. L., 1989: Parameterization of surface resitances to gaseous dry deposition in regional-scale numerical models, Atmos. Environ. 23, 1293–1304.CrossRefGoogle Scholar
  85. Venkatram, A., Karamchanddani, P. K., and Misra, P. K., 1988: Testing a comprehensive acid deposition model, Atmos. Environ. 22, 737–747.CrossRefGoogle Scholar
  86. Vogel, B., Fiedler, F., and Vogel, H., 1995: Influence of topography and biogenic voltaile organic compounds emission in the state of Baden-Wurtemberg on ozone concentrations during episodes of high air temperature, J. Geophys. Res. 100, 22907–22928.CrossRefGoogle Scholar
  87. Yamada, T., 1982: A numerical study of turbulent airflow in and above a forest canopy, J. Meteorol. Soc. Jap. 60, 439–454.Google Scholar
  88. Ziemann, A., 1998: Numerical simulations of meteorological quantities in and above forest canopies, Meteorol. Zeitsch. 7, 120–128.Google Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • G. Tetzlaff
    • 1
  • R. Dlugi
    • 2
  • K. Friedrich
    • 3
  • G. Gross
    • 4
  • D. Hinneburg
    • 5
  • U. Pahl
    • 4
  • M. Zelger
    • 2
  • N. Mölders
    • 6
  1. 1.LIM — Institut für MeteorologieUniversität LeipzigLeipzigGermany
  2. 2.Arbeitsgruppe Atmosphärische ProzesseMünchenGermany
  3. 3.Institut für Physik der Atmosphäre, OberpfaffenhofenWesslingGermany
  4. 4.Institut für Meteorologie und KlimatologieUniversität HannoverHannoverGermany
  5. 5.Institut für TroposphärenforschungLeipzigGermany
  6. 6.Geophysical InstituteUniversity of Alaska FairbanksFairbanksUSA

Personalised recommendations