Skip to main content

On Modeling Dry Deposition of Long-Lived and Chemically Reactive Species over Heterogeneous Terrain

  • Chapter
Tropospheric Chemistry

Abstract

An explicit multi-layer subgrid-scheme was developed for a meso-γ/β-scale model to consider subgrid-scale surface heterogeneity, dry deposition, biogenic and anthropogenic emission of trace gases. Since dry deposition measurements of highly reactive trace species are scarce we try to evaluate this scheme by heuristic principles. The results of simulations conducted for a 5 × 5 km2 resolution with and without this scheme are evaluated by using results of a model run with 1 × 1 km2 resolution, which is taken as a ‘grand thruth’ and which has the same resolution as the subgrid. The explict multi-layer subgrid scheme provides a similar distribution of dry deposition fluxes as the much more computationally expensive simulation with the 1 × 1 km2 resolution.

Dry deposition fluxes determined from observations give evidence that the explicit multi-layer subgrid scheme which does not require a constant flux approximation for a layer of several decameters leads to an improvement in determining the exchange between the atmosphere and the ground.

Results of simulations with a microscale model show that the inhomogeneity at forest edges leads to an increase of the turbulent transports of up to a factor 4 compared to horizontally homogeneous terrain, which is assumed to be the conditions of the subgrid cells (and which is usually the assumption for the entire grid cell in mesoscale models). Inhomogeneity inside an extended stand of trees causes an overall increase of 5–10% with high local extremes, i.e. such an inhomogeneity results to an underestimation of dry deposition in meso-γ/β-scale models. The effects are most pronounced for a wind direction perpendicular to the forest edge.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arya, S. P., 1988: Introduction to Micrometeorology, Academic Press, San Diego, p. 303.

    Google Scholar 

  • Avissar, R. and Pielke, R. A., 1989: A parameterization of heterogeneous land surface for atmospheric numerical models and its impact on regional meteorology, Mon. Wea. Rev. 117, 2113–2136.

    Article  Google Scholar 

  • Baer, M. and Nester, K., 1992: Parameterization of trace gas dry deposition velocities for a regional mesoscale diffusion model, Ann. Geophys. 10, 912–923.

    Google Scholar 

  • Baldocchi, D. D., 1988: A multi-layer model for estimating sulfur dioxide deposition to a deciduous oak forest canopy, Atmos. Environ. 22, 869–884.

    Article  Google Scholar 

  • Beier, N., Schroers, H., Müller, D., and Weber, M., 1997: Grenzschichtmeteorologische Untersuchungen zur trockenen Deposition chemisch inerter und reaktiver Luftbeimengungen, BMBF-Abschlussbericht, Meteorol. Inst. München.

    Google Scholar 

  • Blackadar, A. K., 1962: The vertical distribution of wind and turbulent exchange in a neutral atmosphere, J. Geophys. Res. 67, 3095–3103.

    Article  Google Scholar 

  • Bowling, D. R., Delany, A. C., Turnispeed, A. A., Baldocchi, D. D., and Mason, R.K., 1999: Modification of the relaxed eddy accumulation technique to maximize the measured scalar mixing ratio differences in updrafts and downdrafts, J. Geophys. Res. 104D, 9121–9133.

    Article  Google Scholar 

  • Brost, R. A., Delany, A. C., and Huebert, B. J., 1988: Numerical modeling of concentrations and fluxes of HNO3, NH3, and NH4NO3 near the surface, J. Geophys. Res. 93, 7137–7152.

    Article  Google Scholar 

  • Brunnemann, G., Kins, L., and Dlugi, R., 1996: Physical and chemical characterisation of the atmospheric aerosol: An overview of the measurements during SANA2 campaign at Melpitz, Meteorol. Zeitschr. 5, 245–256.

    Google Scholar 

  • Businger, J. A., Wyngaard, J. C., Izumi, Y., and Bradley, E. F., 1971: Flux profile relationship in the atmospheric surface layer, J. Atmos. Sci. 28, 181–189.

    Article  Google Scholar 

  • Businger, J. A., 1986: Evaluation of the accuracy with which dry deposition can be measured with current micrometeorological techniques, J. Appl. Meteorol. 25, 1100–1124.

    Article  Google Scholar 

  • Chang, J. S., Brost, R. A., Isaksen, I. S. A., Madronich, S., Middleton, P., Stockwell, W. R., and Walcek, C. J. 1987: A three dimensional Eulerian acid deposition model: physical concepts and formulation, J. Geophys. Res. 92, 14681–14700.

    Article  Google Scholar 

  • Clegg, S. L., Brimblecombe, P., and Wexler, A. S., 1998: Thermodynamic model of the system H+-NH +4 -SO 2−4 -NO 3 -H2O at tropospheric temperatures, J. Phys. Chem. A102, 2147–2165.

    Google Scholar 

  • Deardorff, J. W., 1978: Efficient prediction of ground surface temperature and moisture with inclusion of a layer of vegetation, J. Geophys. Res. 8(3), 1889–1903.

    Article  Google Scholar 

  • Dlugi, R., 1988: Deposition of gaseous and particulate compounds from a profile method, in H. van Dop (ed.), Air Pollution Modelling and its Application, VI. Plenum, pp. 49–60.

    Google Scholar 

  • Dlugi, R., 1993: Interaction of NOx and VOCs within vegetation, in P. M. Borrell, P. Borrell, T. Cvitas, and W. Seiler (eds), Photo-Oxidants: Precursors and Products, Proceedings of EUROTRAC Symposium’ 92, Academic Publishing, The Hague, pp. 682–688.

    Google Scholar 

  • Ebel, A., Hass, H., Jakobs, H. J., Laube, M., and Mölders, N., 1994: Simulation of chemical transformation and vertical redistribution of air pollutants in clouds, in Physico-Chemical Behaviour of Atmospheric Pollutants, Proceedings of the Sixth European Symposium, Varese, 18–22 October, pp. 1035–1039.

    Google Scholar 

  • Eppel, D. P., Kapitza, H., Claussen, M., Jacob, D., Koch, W., Levkov, L., Mengelkamp, H.-T., and Werrmann, N., 1995: The non-hydrostatic mesoscale model GESIMA. Part II: Parameterizations and applications, Contrib. Atmos. Phys. 68, 15–41.

    Google Scholar 

  • Falls, A. H. and Seinfeld, J. H., 1978: Continued development of kinetic mechanism for photochemical smog, Environ Sci. Technol. 12, 1398–1406.

    Article  Google Scholar 

  • Feldmann, H., Hass, H., Memmesheimer, M., and Jakobs, H.-J., 1996: Budgets of atmospheric sulfur for East Germany based on meso-α-scale simulations, Meteorol. Zeitsch. 5, 194–204.

    Google Scholar 

  • Fitzjarrald, D. R., and Lenschow, D. H., 1983: Mean concentration and flux profiles for chemically reactive species in the atmospheric surface layer, Atmos. Environ. 17, 2505–2512.

    Article  Google Scholar 

  • Friedrich, K., Mölders, N., and Tetzlaff, G., 2000: On the influence of surface heterogeneity on the Bowen-ratio: A theoretical case study, Theor. Appl. Clim. 65, 181–196.

    Article  Google Scholar 

  • Friedrich, K. and Mölders, N., 2000: On the influence of surface heterogeneity on latent heat-fluxes and stratus properties. Atmos. Res. 54, 59–85.

    Article  Google Scholar 

  • Ganzeveld, L. and Lelieveld, J., 1995: Dry deposition parameterization in a chemistry general circulation model and its influence on the distribution of reactive trace gases, J. Geophys. Res. 100D, 1999–2001.

    Google Scholar 

  • Gao, W., Wesely, M. L., and Lee, I. Y., 1991: A numerical study of the effects of air chemistry on fluxes of NO, NO2, and O3 near the surface, J. Geophys. Res. 96D, 18761–18769.

    Article  Google Scholar 

  • Gross, G., 1993: Numerical Simulations of Canopy Flows, Springer, Berlin.

    Book  Google Scholar 

  • Hanson, P. J. and Lindberg, S. E., 1991: Dry deposition of reactive nitrogen componds: A review of leaf, canopy and non-foliar measurements, Atmos. Environ. 25A, 1615–1634.

    Google Scholar 

  • Hass, H., Jacobs, H. J., and Memmesheimer, M., 1995: Analysis of a regional model (EURAD) near-surface gas concentration predictions using observations from networks, Meteorol. Atmos. Phys. 57, 173–200.

    Article  Google Scholar 

  • Hicks, B. B., Baldocchi, D. D., Meyers, T. P., Hosker, J. R. P., and Matt, D. R., 1987: Preliminary multiple resistance routine for deriving dry deposition velocities from measured quantities, Water Air Soil Pollut. 36, 311–330.

    Article  Google Scholar 

  • Hinneburg, D. and Mölders, N., 1999: A mesoscale atmospheric model combining meteorology, chemistry, biology and heterogeneity, in A. Raabe, K. Arnold, and J. Heintzenberg (eds), Meteorologische Arbeiten aus Leipzig (IV), Wiss. Mitt. Leipzig 12, pp. 44–58.

    Google Scholar 

  • Hinneburg, D. and Mölders, N., 2000: Dry deposition by an atmospheric model with horizontal subgrid, in K. Arnold and A. Raabe (eds), Meteorologische Arbeiten aus Leipzig (V), Wiss. Mitt. Leipzig 17, pp. 18–28.

    Google Scholar 

  • Hinneburg, D., 2001: A mesoscale atmospheric model with horizontal subgrid for chemical transport, Phys. Chem. Earth 26, 111–115.

    Article  Google Scholar 

  • Hinneburg, D., Knoth, O., Mölders, N., Münzenberg, A., and Wolke, R., 2001: Subgrid-modelling of dry deposition, in W. Seiler et al. (eds), The Proceedings of the EUROTRAC Symposium 2000, VITpress, Southampton, in press.

    Google Scholar 

  • Inclan, M., Forkel, R., Dlugi, R., and Stull, R., 1996: Application of transilient turbulent theory to study interactions between the atmospheric boundary layer and forest canopies, Boundary-Layer Meteorol. 79, 315–344.

    Article  Google Scholar 

  • Inoue, K., 1963: On the turbulent structure of airflow within crop canopies, J. Meteor. Soc. Jap. 11, 18–22.

    Google Scholar 

  • John, C., 1999: Emissionen von Luftverunreinigungen aus dem Straßenverkehr in hoher räumlicher und zeitlicher Auflösung — Untersuchungen von Emissionsszenarien am Beispiel Baden-Würtembergs, IER Research Reports, Ph.D. thesis, p. 214, in German.

    Google Scholar 

  • Kapitza, H. and Eppel, D. R., 1992: The non-hydrostatic mesoscale model GESIMA. Part I: Dynamical equations and tests. Contr. Phys. Atmos. 65, 129–146.

    Google Scholar 

  • Kramm, G., 1989: A numerical model to determine dry deposition of atmospheric trace gases, Boundary-Layer Meteorol. 48, 157–176.

    Article  Google Scholar 

  • Kramm, G. and Dlugi, R., 1994: Modelling of the vertical fluxes of nitric acid, ammonia, and ammonium nitrate, J. Atmos. Chem. 18, 319–357.

    Article  Google Scholar 

  • Kramm, G., Dlugi, R., Mölders, N., and Müller, H., 1994: Numerical investigations of the dry deposition of reactive trace gases, in J. M. Baldasano, C. A. Brebbia, H. Power, and P. Zannetti (eds), Air Pollution II Vol. 1: Computer Simulation, Computational Mechanics Publications, Southampton, Boston, pp. 285–307.

    Google Scholar 

  • Kramm, G., 1995: Zum Austausch von Ozon und reaktiven Stickstoffverbindungen zwischen Atmosphäre und Biosphäre, Wissenschafts-Verlag Dr. W. Maraun, Frankfurt/Main, Germany.

    Google Scholar 

  • Kramm, G., Dlugi, R., Dollard, G. J., Foken, T., Mölders, N., Müller, H., Seiler, W., and Sievering, FL: 1995, On the dry deposition of ozone and reactive nitrogen compounds, Atmos. Environ. 29, 3209–3231.

    Article  Google Scholar 

  • Kramm, G. and Mölders, N., 1996: Investigations on the exchange of water and reactive trace constituents under consideration of various aspects of heterogeneity, in P. M. Borrell, P. Borrell, T. Cvitas, K. Kelly, and W. Seiler (eds.), The Proceedings of the EUROTRAC Symposium’ 96, Computational Mechanics Publications, Southampton, pp. 79–84.

    Google Scholar 

  • Kramm, G., Beier, N., Foken, T., Müller, H., Schröder, P., and Seiler, W., 1996: A SVAT scheme for NO, NO2, and O3 — model description. Meteorol. Atmos. Phys. 61, 89–106.

    Article  Google Scholar 

  • Kramm, G., Beier, N., Dlugi, R., and Müller, H., 1999: Evaluation of conditional sampling methods, Contrib. Atmos. Phys. 72, 161–172.

    Google Scholar 

  • Kramm, G. and Meixner, F. X., 2000: On the dispersion of trace species in the atmospheric boundary layer: A re-formulation of the governing equations for the turbulent flow of the compressible atmosphere. Tellus 52A, 500–522.

    Google Scholar 

  • Kumar, N., Odman, M. T., and Russell, A. G., 1994: Multiscale air quality modeling: Application to southern California, J. Geophys. Res. 99, 5385–5397.

    Article  Google Scholar 

  • Lenschow, D. H. and Delany, A. C, 1987: Dry deposition of nitrogen-containing species, Atmos. Environ. 30, 2889–2900.

    Google Scholar 

  • Mahrt, L., Lenschow, D. H., Sun, J., and Weil, J. C., 1995: Ozone fluxes over patchy cultivated surface, J. Geophys. Res. 100D, 23125–23131.

    Article  Google Scholar 

  • McRae, G. J. and Seinfeld, J. H., 1983: Development of a second-generation mathematical model for urban pollution I. Model formulation, Atmos. Environ. 16, 679–696.

    Google Scholar 

  • McRae, G. J. and Russell, A. G., 1984: Dry deposition of nitrogen-containing species, in B. B. Hicks (ed.), Deposition Both Wet and Dry, Acid Precipitation Series Vol. 4. Butterworth, Boston/London, pp. 153–193.

    Google Scholar 

  • Mellor, G. L. and Yamada, T., 1974: A hierarchy of turbulence closure models for planetary boundary layers, J. Atmos. Sci. 31, 1791–1806.

    Article  Google Scholar 

  • Meng, Z. and Seinfeld, J. H., 1996: Time scales to achieve atmospheric trace gas aerosol equilibrium for voltile species, Atmos. Environ. 30, 2889–2900.

    Article  Google Scholar 

  • Meyers, T. and Paw II, K. T., 1986: Testing of a higher-order closure model for modeling airflow within and above plant canopies, Boundary-Layer Meteorol. 37, 297–311.

    Article  Google Scholar 

  • Meyers, T. P. and Paw II, K. T., 1987: Modelling the plant canopy micrometeorology with higher-order closure principles, Agric. Forest Meteorol. 41, 143–163.

    Article  Google Scholar 

  • Meyers, T. P. and Baldocchi, D. D., 1988: A comparison of models for deriving dry deposition fluxes of O3 and SO2 to a forest canopy, Tellus 40B, 270–284.

    Article  Google Scholar 

  • Mölders, N., Raabe, A., and Tetzlaff, G., 1996: A comparison of two strategies on land surface heterogeneity used in a mesoscale β meteorological model, Tellus 48A, 733–749.

    Google Scholar 

  • Mölders, N., Kramm, G., Laube, M., and Raabe, A., 1997: On the influence of bulk-parameterization schemes of cloud microphysics on the predicted water-cycle relevant quantities — a case study, Meteorol. Zeitschr. 6, 21–32.

    Google Scholar 

  • Mölders, N., 1998: Landscape changes over a region in East Germany and their impact upon the processes of its atmospheric water-cycle, Meteorol. Atmos. Phys. 68, 79–98.

    Article  Google Scholar 

  • Müller, H., Kramm, G., Meixner, F. X., Fowler, D., Dollard, G. J., and Possanzani, M., 1993: Determination of HNO3 dry deposition by modified Bowen ratio and aerodynamic profile techniques, Tellus 45B, 346–367.

    Google Scholar 

  • Müller, T., 1994: Ermittlung der SO2-und NOx-Emissionen aus stationären Feuerungsanalgen in Baden-Würtemberg in zeitlicher Auflösung, 1ER Research Reports, Ph.D. thesis, p. 142, in German.

    Google Scholar 

  • Obermeier, A., 1995: Ermittlung und Analyse von Emissionen flüchtiger organischer Verbindungen in Baden-Würtemberg, IER Research Reports, Ph.D. thesis, p. 208, in German.

    Google Scholar 

  • Oncley, S. P., Delany, A. C., Horst, T. W., and Trans, P., 1993: Verification of flux measurements using relaxed eddy accumulation, Atmos. Technol. A27, 2417–2426.

    Google Scholar 

  • Orlanski, I., 1975: A rational subdivision of scales for atmospheric processes, Bull. Amer. Meteorol. Soc. 56, 527–530.

    Google Scholar 

  • Orlanski, I., 1976: A simple boundary condition for unbounded hyperbolic flows, J. Comp. Phys. 21, 251–269.

    Article  Google Scholar 

  • Padro, J., Zhang, L., Massman, W. J., and Stocker, D. W., 1995: An application of a dry deposition model including the chemical reactions of NO-NO2-O3, in H. Power, N. Moussiopoulos, C. A. Bredia (eds), Air Pollution III: Engineering and Management, Computational Mechanics Publication, Southhampton, Boston, pp. 93–100.

    Google Scholar 

  • Pahl, U., 2000: Numerische Simulationen zum Einfluß von Waldbestandsinhomogenitäten auf die Windverhältnisse und die trockene Spurenstoffdeposition, Ber. Inst. Met. Klim. Univ. Hannover 25, Ph.D. thesis, p. 100.

    Google Scholar 

  • Pleim, J. E., Chang, J. S., and Zhang, K., 1991: A nested grid mesoscale atmospheric chemistry model, J. Geophys. Res. 96, 3065–3084.

    Article  Google Scholar 

  • Rinne, H. J. I., Delany, A. C., Greenberg, J. P., and Guenther, A. B., 2000: A true eddy accumulation system for trace gas fluxes, J. Geophys. Res. 105, 24791–24798.

    Article  Google Scholar 

  • Ruck, B. and Schmitt, F., 1986: Das Strömungsfeld der Einzelbaumumströmung, Forstwiss. Cen-tralbl. 105, 178–196.

    Article  Google Scholar 

  • Seidl, W., Brunnemann, G., Kins, L., Köhler, E., Reußwig, K., and Dlugi, R., 1996: On the composition of aerosol particles and related gas phase species at two sites during SANA2 campaign at Melpitz. Meteorol. Zeitschr. 5, 257–268.

    Google Scholar 

  • Seinfeld, J. H., 1986: Atmospheric Chemistry and Physics of Air Pollution, Wiley, New York/Chichester/Brisbane/Toronto/Singapore, p. 738.

    Google Scholar 

  • Seiler, T., Reuder, J., Beyrich, F., and Feldmann, H., 1996: Meteorological conditions during SANAI (Eisdorf) and SANA2 (Melpitz), Meteorol. Zeitschr. 5, 181–193.

    Google Scholar 

  • Seth, A., Giorgi, F., and Dickinson, R. E., 1994: Simulating fluxes from heterogeneous land surfaces: explicit subgrid method employing the biosphere-atmosphere transfer scheme (BATS), J. Geophys. Res. 99D, 18651–18667.

    Article  Google Scholar 

  • Slemr, F. and Seiler, W., 1984: Field measurements of NO and NO2 emissions from fertilized and unfertilized soils, J. Atmos. Chem. 2, 1–14.

    Article  Google Scholar 

  • Shaw, R. H. and Schumann, U., 1992: Large-eddy simulation of turbulent flow above and within a forest, Boundary-Layer Meteorol. 61, 47–64.

    Article  Google Scholar 

  • Smolarkiewicz, P. K., 1984: A fully multidimensional positive definite advection transport algorithm with small implicit diffusion, J. Comp. Phys. 54, 325–362.

    Article  Google Scholar 

  • Smolarkiewicz, P. K. and Clark, T. L., 1986: The multidimensional positive definite advection transport algorithm: Further development and applications. J. Comp. Phys. 67, 396–438.

    Article  Google Scholar 

  • Spindler, G., Mölders, N., Hansz, J., Beier, N., and Kramm, G., 1996: Determining the dry deposition of SO2, O3, NO, and NO2 at the SANA core station Melpitz, Meteorol. Zeitschr. 5, 205–220.

    Google Scholar 

  • Stockwell, W. R., Middleton, P., Chang, J. S., and Tang, X., 1990: The second generation regional acid deposition model, chemical mechanism for regional air quality modeling, J. Geophys. Res. 95, 16343–16367.

    Article  Google Scholar 

  • Tetzlaff, G. and Mölders. N., 1997: Beurteilung der Modellierbarkeit des flächenbezogenen Eintrages von Spurenstoffen durch Deposition, in W. v. Hoyningne-Huene and G. Tetzlaff (eds), Sediment und Aerosol, Wiss. Mitt. Leipzig, 6, 99–144.

    Google Scholar 

  • Trepte, S., 1998: Simulation innerstädtischer Konzentrationsfelder mit einem mikroskaligen Chemie-Transport-Modell, Shaker Verlag, Aachen, p. 111, in German.

    Google Scholar 

  • Walcek, C. J., Brost, R. A., and Chang, J. S., 1986: SO2, sulfat and HNO3 deposition velocities computed using regional landuse and meteorological data, Atmos. Environ. 20, 949–964.

    Article  Google Scholar 

  • Wesely, M. L., 1989: Parameterization of surface resitances to gaseous dry deposition in regional-scale numerical models, Atmos. Environ. 23, 1293–1304.

    Article  Google Scholar 

  • Venkatram, A., Karamchanddani, P. K., and Misra, P. K., 1988: Testing a comprehensive acid deposition model, Atmos. Environ. 22, 737–747.

    Article  Google Scholar 

  • Vogel, B., Fiedler, F., and Vogel, H., 1995: Influence of topography and biogenic voltaile organic compounds emission in the state of Baden-Wurtemberg on ozone concentrations during episodes of high air temperature, J. Geophys. Res. 100, 22907–22928.

    Article  Google Scholar 

  • Yamada, T., 1982: A numerical study of turbulent airflow in and above a forest canopy, J. Meteorol. Soc. Jap. 60, 439–454.

    Google Scholar 

  • Ziemann, A., 1998: Numerical simulations of meteorological quantities in and above forest canopies, Meteorol. Zeitsch. 7, 120–128.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Kluwer Academic Publishers

About this chapter

Cite this chapter

Tetzlaff, G. et al. (2002). On Modeling Dry Deposition of Long-Lived and Chemically Reactive Species over Heterogeneous Terrain. In: Seiler, W., Becker, KH., Schaller, E. (eds) Tropospheric Chemistry. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0399-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0399-5_6

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-3921-5

  • Online ISBN: 978-94-010-0399-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics