Skip to main content

Basic Science for Prediction and Reduction of Geological Disasters

  • Chapter
Risk Science and Sustainability

Part of the book series: NATO Science ((NAII,volume 112))

Abstract

Vulnerability of our civilisation to geological disasters is rapidly growing due to well known global trends: proliferation of radioactive waste disposals, high dams, nuclear power plants, lifelines and other high-risk objects; geotechnical deterioration of megacities; destabilisation of the environment; and, amplifying the ripple effects of disasters, — the growing socio-economic volatility of the global village, with each country becoming sensitive to developments in other parts of the world that are outside its control. As a result, geological disasters rank as major threats to survival and sustainable development of our civilisation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Keilis-Borok, V.I. and Soloviev, A.A., eds. (2002) Nonlinear Dynamics of the Lithosphere and Earthquake Prediction, Springer-Verlag, Heidelberg.

    Google Scholar 

  2. Keilis-Borok, V.I. (2002) Earthquake prediction: State-of-the-art and emerging possibilities, Ann. Rev. Earth Planet. Sci. 30, 1–33.

    Article  CAS  Google Scholar 

  3. Scholz, C.H. (1990) The Mechanics of Earthquakes and Faulting, Cambridge University Press, Cambridge.

    Google Scholar 

  4. Frish, U. (1995) Turbulence: The Legacy of Kolmogorov, Cambridge University Press, Cambridge.

    Google Scholar 

  5. Newman, W.I., Gabrielov, A. and Turcotte, D.L., eds. (1994) Nonlinear Dynamics and Predictability of Geophysical Phenomena. Geophysical Monograph Series 83, American Geophysical Union, Washington, D.C.

    Book  Google Scholar 

  6. Gabrielov, A.M., Keilis-Borok, V.I., Zaliapin, I.V. and Newman, W.I. (2000) Colliding cascades model for earthquake prediction, Geophys. J. Int. 143, 427–437.

    Article  Google Scholar 

  7. Sornette, D. (2000) Critical Phenomena in Natural Sciences: Chaos, Fractals, Set/organization and Disorder: Concepts and Tools, Springer-Verlag, Berlin.

    Google Scholar 

  8. Rundle, J.B., Turcotte, D.L. and Klein, W., eds. (2000) Geocomplexity and the Physics of Earthquakes, Geophysical Monograph Series 120, American Geophysical Union, Washington, D.C.

    Book  Google Scholar 

  9. Turcotte, D.L. (1997) Fractals and Chaos in Geology and Geophysics, 2nd ed. Cambridge University Press, Cambridge.

    Book  Google Scholar 

  10. Zaliapin, I., Keilis-Borok, V. and Ghil, M. (2001) A Boolean Delay Model of Colliding cascades. II: Prediction of Critical Transitions, Preprint of the Abdus Salam International Centre for Theoretical Physics, Trieste.

    Google Scholar 

  11. Baldi, R. and Polity, A. (1999) Complexity: Hierarchical Structures And Scaling in Physics, Cambridge University Press, Cambridge.

    Google Scholar 

  12. Holland, J.H. (1995) Hidden Order: How Adaptation Builds Complexity, Addison-Wesley, Reading, MA.

    Google Scholar 

  13. Gunderson, L.H. and Holling, C.S., eds. (2002) Panarchy: Understanding Transformations in Human and Natural Systems, Island Press.

    Google Scholar 

  14. Keilis-Borok, V. (1996) Intermediate-term earthquake prediction, Proc. Nat. Acad. Sci. USA 93, 3748–3755.

    Article  CAS  Google Scholar 

  15. Keilis-Borok, V.I. (1994) Symptoms of instability in a system of earthquake-prone faults, Physica D 77, 193–199.

    Article  Google Scholar 

  16. Keilis-Borok, V.I. and Shebalin, P.N., eds. (1999) Dynamics of Lithosphere and Earthquake Prediction. Special Issue, Phys. Earth Planet. Inter. 111, 179–330.

    Google Scholar 

  17. Kantorovich, L.V. and Keilis-Borok, V.I. (1991) Earthquake prediction and decision-making: social, economic and civil protection aspects. In: Proc. International Conference on Earthquake Prediction: State-of-the-Art, Strasbourg, France, Scientific-Technical Contributions, CSEM-EMSC: 586–593.

    Google Scholar 

  18. Molchan, G.M. (1997) Earthquake prediction as a decision-making problem, Pure Appl. Geophys. 149, 233–247.

    Article  Google Scholar 

  19. Gelfand, I.M., Guberman, Sh.A., Keilis-Borok, V.I., Knopoff, L., Press, F., Ranzman, E.Ya., Rotwain, I.M. and Sadovsky, A.M. (1976) Pattern recognition applied to earthquake epicenters in California. Phys. Earth Planet. Inter. 11, 227–283.

    Article  Google Scholar 

  20. Keilis-Borok, V., Shebalin, P, and Zaliapin, I. (2002). Premonitory Patterns of Seismicity Months Before a Large Earthquake: Five Case Histories in Southern California. Proc. Natl Acad. Sci. 99(26), 16562–16567.

    Article  CAS  Google Scholar 

  21. Harte, D., Li, D., Vreede, M., and Vere-Jones, D. (2002) Quantifying the M8 algorithm: Reduction to a single variable and stability results, New Zealand Journal of Geology and Geophysics, in print.

    Google Scholar 

  22. Kagan, Y.Y. and Jackson, D.D. (2000) Probabilistic forecasting of earthquakes, Geophys. J. Int. 143, 438–453.

    Article  Google Scholar 

  23. Internet web-sites: http://www.igpp.ucla.edu/mcdonnell; http://www.mitp.ru; http://www.phys.ualberta.ca/mirrors/mitp.

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Keilis-Borok, V.I. (2003). Basic Science for Prediction and Reduction of Geological Disasters. In: Beer, T., Ismail-Zadeh, A. (eds) Risk Science and Sustainability. NATO Science, vol 112. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0167-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0167-0_5

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-1447-5

  • Online ISBN: 978-94-010-0167-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics