Skip to main content

Dynamic utilization of GABA in substantia nigra: regulation by dopamine and GABA in the striatum, and its clinical and behavioral implications

  • Chapter
The Biological Effects of Glutamic Acid and Its Derivatives

Part of the book series: Developments in Molecular and Cellular Biochemistry ((DMCB,volume 1))

  • 470 Accesses

Abstract

The neural circuitry of the basal ganglia provides a challenging framework in which to consider the role and regulation of GABA-containing synapses. GABA-containing neurons and terminals are located throughout the various nuclei of the basal ganglia, including caudate and putamen (together referred to as ‘striatum’), globus pallidus, and substantia nigra (SN). In fact, the concentration of GABA in the SN is the highest of all brain areas. In this system we can find an excellent example of a ‘long-distance’ GABAergic neural pathway projecting from the striatum to the SN, as well as a significant population of smaller GABAergic neurons intrinsic to the striatum (interneurons). Moreover, it is likely that the various GABA neurons in the basal ganglia are involved in circuits in which they mutually regulate each other’s activity, as well as the activity of neurons containing other neurotransmitters. At the same time, these GABAergic neurons are subject to the control and influence of several pathways which converge on the striatum; in this context they may serve a significant integrating function.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Perry, T. L., Hansen, S. & Kloster, M., 1973. Huntington’s chorea. Deficiency of gamma-aminobutyric acid in brain. New Engl. J. Med. 288: 337–342.

    Article  PubMed  CAS  Google Scholar 

  2. McGeer, P. L. & McGeer, E. G., 1976. Enzymes associated with the metabolism of catecholamines, acetylcholine and GABA in human controls and patients with Parkinson’s disease and Huntington’s chorea. J. Neurochem. 26: 65–76.

    PubMed  CAS  Google Scholar 

  3. McGeer, P. L., McGeer, E. G., Wada, J. A. & Jung, E., 1971. Effects of globus pallidus lesions and Parkinson’s disease on brain glutamic acid decarboxylase. Brain Res. 32: 425–431.

    Article  PubMed  CAS  Google Scholar 

  4. Lloyd, K. G. & Hornykiewicz, O., 1973. L-Glutamic acid decarboxylase in Parkinson’s disease: effect of 1-dopa therapy. Nature, Lond. 243: 521–523.

    Google Scholar 

  5. McGeer, P. L., McGeer, E. G., Scherer, U. & Singh, K., 1977. A glutamatergiccorticostriatal path? Brain Res. 128: 369–373.

    Article  PubMed  CAS  Google Scholar 

  6. Divac, I., Fonnum, F. & Storm-Mathisen, J., 1977. High affinity uptake of glutamate in terminals of corticostriatal axons. Nature, Lond. 266: 377–378.

    Article  CAS  Google Scholar 

  7. Carpenter, M. B., 1976. Anatomical organization of the corpus striatum and related nuclei. In: The Basal Ganglia ( M. D. Yahr, ed.) Raven Press, New York, pp. 1–35.

    Google Scholar 

  8. Hassler, R., 1978. Striatal control of locomotion, intentional actions and of integrating and perceptive activity. J. Neurol. Sci. 36: 187–224.

    Article  PubMed  CAS  Google Scholar 

  9. Ungerstedt, U., 1971. Stereotaxic mapping of the monoamine pathways in the rat brain. Acta Physiol. Scand., Suppl. 367: 1–48.

    Google Scholar 

  10. Lindvall, O. & Bjorklund, A., 1974. The organization of the ascending catecholamine neuron systems in the rat brain as revealed by the glyoxylic acid fluorescence method. Acta Physiol. Scand., Suppl. 412: 1–48.

    CAS  Google Scholar 

  11. Siggins, G. R., Hoffer, B. J., Bloom, F. E. & Ungerstedt, U., 1976. Cytochemical and electrophysiological studies of dopamine in the caudate nucleus. In: The Basal Ganglia ( M. D. Yahr, ed.) Raven Press, New York, pp. 227–248.

    Google Scholar 

  12. Connor, J. D., 1970. Caudate nucleus neurones: correlation of the effects of substantia nigra stimulation with iontophoretic dopamine. J. Physiol., Lond. 208: 691–703.

    Google Scholar 

  13. Miller, J. J., Richardson, T. L., Fibiger, H. C. & McLennan, H., 1975. Anatomical and electrophysiological identification of a projection from the mesencephalic raphe to the caudate-putamen in the rat. Brain Res. 97: 133–138.

    Article  PubMed  CAS  Google Scholar 

  14. Samanin, R., Quattrone, A., Peri, G., Ladinsky, H. & Consolo, S., 1978. Evidence of an interaction between serotoninergic and cholinergic neurons in the corpus striatum and hippocampus of the rat brain. Brain Res 151. 73–82.

    Article  PubMed  CAS  Google Scholar 

  15. Olpe, H. R. & Koella, W. P., 1977. The response of striatal cells upon stimulation of the dorsal and medial raphe nuclei. Brain Res. 122: 357–360.

    Article  PubMed  CAS  Google Scholar 

  16. Ljungdahl, A., Hokfelt, T., Goldstein, M. & Park, D., 1975. Retrograde peroxidase tracing of neurons combined with transmitter histochemistry. Brain Res. 84: 313–319.

    Article  PubMed  CAS  Google Scholar 

  17. Fibiger, H. C., Pudritz, R. E., McGeer, P. L. & McGeer, E. G., 1972. Axonal transport in nigro-striatal and nigro- thalamic neurons: effects of medial forebrain bundle lesions and 6-hydroxydopamine. J. Neurochem. 19: 1697–1708.

    Article  PubMed  CAS  Google Scholar 

  18. Guyenet, P. G. & Aghajanian, G. K., 1978. Antidromic identification of dopaminergic and other output neurons of the rat substantia nigra. Brain Res. 150: 69–84.

    Article  PubMed  CAS  Google Scholar 

  19. Hattori, T., Singh, V. K., McGeer, E. G. & McGeer, P. L., 1976. Immunohistochemical localization of choline acetyl- transferase containing neostriatal neurons and their relationship with dopaminergic synapses. Brain Res. 102: 164–173.

    Article  PubMed  CAS  Google Scholar 

  20. McGeer, P. L., McGeer, E. G., Fibiger, H. C. & Wickson, V., 1971. Neostriatal choline acetylase and cholinesterase following selective brain lesions. Brain Res. 35: 308–314.

    Article  PubMed  CAS  Google Scholar 

  21. McLennan, H. & York, D. H., 1966. Cholinergic mechanisms in the caudate nucleus. J. Physiol. 187: 163–175.

    PubMed  CAS  Google Scholar 

  22. McGeer, P. L. & McGeer, E. G., 1975. Evidence for glutamic acid decarboxylase containing interneurons in the neostriatum. Brain Res. 91: 331–335.

    Article  PubMed  CAS  Google Scholar 

  23. Ribak, C. E., Vaughn, J. E. & Saito, K., 1978. Immuno-cytochemical localization of glutamic acid decarboxylase in neuronal somata following colchicine inhibition of axonal transport. Brain Res. 140: 315–332.

    Article  PubMed  CAS  Google Scholar 

  24. Ribak, C. E., Vaughn, J. E. & Roberts, E., 1979. The GAB A neurons and their axon terminals in rat corpus striatum as demonstrated by GAD immunocytochemistry. J. Comp. Neurol. 187: 261–283.

    Google Scholar 

  25. Hong, J. S., Yang, H. Y. T. & Costa, E., 1977. On the location of methionine-enkephalin neurons in rat striatum. Neuropharm. 16: 451–453.

    Article  CAS  Google Scholar 

  26. Schwarcz, R., Fuxe, K., Hokfelt, T., Terenius, L. & Goldstein, M., 1980. Effects of chronic striatal kainate lesions on some dopaminergic parameters and enkephalin immunoreactive neurons in the basal ganglia. J. Neuro¬chem. 34: 772–778.

    Article  CAS  Google Scholar 

  27. Pollard, H., Llorens, C., Schwartz, J. C., Gros, C. & Dray, F., 1978. Localization of opiate receptors and enkephalins in the rat striatum in relationship with the nigrostriatal dopaminergic system: Lesion studies. Brain Res. 151: 392–398.

    Google Scholar 

  28. Carenzi, A., Frigeni, V. & Delia Bella, D., 1978. Synaptic localization of opiate receptors in rat striatum. Adv. Bioc. Psychopharm. 18: 265–270.

    CAS  Google Scholar 

  29. McGeer, E. G., Innanen, V. T. & McGeer, P. L., 1976. Evidence on the cellular localization of adenyl cyclase in the neostriatum. Brain Res. 118: 356–358.

    Article  PubMed  CAS  Google Scholar 

  30. Schwarcz, R., Creese, I., Coyle, J. T. & Snyder, S. H., 1978. Dopamine receptors localized on cerebral cortical afferents to rat corpus striatum. Nature, Lond. 271: 766–768.

    Google Scholar 

  31. Garau, L., Govoni, S., Stefanini, E., Trabucchi, M. & Spano, P. F., 1978. Dopamine receptors: pharmacological and anatomical evidence that two distinct dopamine receptor populations are present in rat striatum. Life Sci. 23: 1745–1750.

    Article  PubMed  CAS  Google Scholar 

  32. Creese, I., Usdin, T. & Snyder, S. H., 1979. Guanine nucleotides distinguish two dopamine receptors. Nature (Lond.) 278: 577–578.

    Article  CAS  Google Scholar 

  33. Hattori, T., McGeer, P. L., Fibiger, H. C. & McGeer, E. G., 1973. On the source of GABA-containing terminals in the rat substantia nigra. Electron microscopic, auto¬radiographic and biochemical studies. Brain Res. 54: 103-114.

    Google Scholar 

  34. Ribak, C. E., Vaughn, J. E. & Roberts, E., 1980. G ABAergic nerve terminals decrease in the substantia nigra following hemitransection of the striatonigral and pallidonigral pathways. Brain Res. 192: 413–420.

    Article  PubMed  CAS  Google Scholar 

  35. Precht, W. & Yoshida, M., 1971. Blockage of caudate- evoked inhibition of neurons in the substantia nigra by picrotoxin. Brain Res. 32: 229–233.

    Article  PubMed  CAS  Google Scholar 

  36. Minchin, M. C. W. & Fonnum, F., 1979. Metabolism of GABA and other amino acids in rat substantia nigra slices following lesions of the striatonigral pathway. J. Neurochem. 32: 203–209.

    Article  PubMed  CAS  Google Scholar 

  37. Kanazawa, I., Emson, P. C. & Cuello, A. C., 1977. Evidence for the existence of Substance P-containing fibers in striatonigral and pallidonigral pathways in rat brain. Brain Res. 119: 447–453.

    Article  PubMed  CAS  Google Scholar 

  38. Gale, K., Hong, J. S. & Guidotti, A., 1977. Presence of substance P and GABA in separate striatonigral neurons. Brain Res. 136: 371–375.

    Article  PubMed  CAS  Google Scholar 

  39. Davies, J. & Tongroach, P., 1979. Tetanus toxin and synaptic inhibition in the substantia nigra and striatum of the rat. J. Physiol. 290: 23–36.

    PubMed  CAS  Google Scholar 

  40. Dray, A. & Straughn, D. W., 1978. Chemical transmission and the substantia nigra - some implications. In Chemical Communication Within the Nervous System and its Disturbance in Disease ( A. Taylor & M. T. Jones, eds.) Pergamon Press, Oxford, pp. 65–82.

    Google Scholar 

  41. Walker, R. J., Kemp, J. A., Yajima, H., Kitagawa, K. & Woodruff, G. N., 1976. The action of substance P on mesencephalic reticular and substantia nigral neurones of the rat. Experientia 32: 214–215.

    Article  PubMed  CAS  Google Scholar 

  42. Davies, J. & Dray, A., 1976. Substance P in the substantia nigra. Brain Res. 107: 623–627.

    Article  PubMed  CAS  Google Scholar 

  43. Fonnum, F., Gottesfeld, Z. & Grofova, I., 1978. Distribution of glutamate decarboxylase, choline acetyltransferase and aromatic amino acid decarboxylase in the basal ganglia of normal and operated rats. Evidence for striato- pallidal, striatoentopeduncular and striatonigral GABA- ergic fibers. Brain Res. 143: 125–138.

    Google Scholar 

  44. Cuello, A. C. & Paxinos, G., 1978. Evidence for a long Leu-enkaphalin striopallidal pathway in rat brain. Nature, Lond. 271: 178–180.

    Article  CAS  Google Scholar 

  45. Cuello, A. C., 1978. Enkephalin and substance P containing neurons in the trigeminal and extrapyramidal systems. Adv. Bioc. Psychopharm. 18: 111–123.

    Google Scholar 

  46. Gale, K. & Iadarola, M. J., 1980. GABAergic denervation of rat substantia nigra: functional and pharmacological properties. Brain Res. 183: 217–223.

    Article  PubMed  CAS  Google Scholar 

  47. Bobillier, P., Seguin, S., Petitjean, F., Salvert, D., Touret, M. & Jouvet, M., 1976. The raphe nuclei of the cat brain stem: a topographic atlas of their efferent projections as revealed by autoradiography. Brain Res. 113: 449–486.

    Article  PubMed  CAS  Google Scholar 

  48. Palkovits, M., Saavedra, J. M., Jacobowitz, D. M., Kizer, J. S., Zaborszky, L. & Brownstein, M. J., 1977. Serotonergic innervation of the forebrain: effects of lesions on serotonin and tryptophan hydroxylase levels. Brain Res. 130: 121–134.

    Article  PubMed  CAS  Google Scholar 

  49. Dray, A., Davies, J., Oakley, N. R., Tongroach, P. & Vellucci, S., 1978. The dorsal and medial raphe projections to the substantia nigra in the rat: electrophysiological, biochemical and behavioral observations. Brain Res. 151: 431–442.

    Article  PubMed  CAS  Google Scholar 

  50. Dray, A., Gonye, T. J., Oakley, N. R. & Tanner, T., 1976. Evidence for the existence of a raphe projection to the substantia nigra in rat. Brain Res. 113: 45–57.

    Article  PubMed  CAS  Google Scholar 

  51. Graybiel, A. M., 1978. Organization in the nigrotectal connections: an experimental tracer study in the cat. Brain Res. 143: 339–348.

    Article  PubMed  CAS  Google Scholar 

  52. Hedreen, J. C., 1971. Separate demonstration of dopaminergic and non-dopaminergic projections of substantia nigra in the rat. Anat. Rec. 169: 338.

    Google Scholar 

  53. Beckstead, R. M., Domesick, V. B. & Nauta, W. J. H., 1979. Efferent connections of the substantia nigra and ventral tegmental area in the rat. Brain Res. 175: 191–217.

    Article  PubMed  CAS  Google Scholar 

  54. Jayaraman, A., Batton, R. R. & Carpenter, M. B., 1977. Nigrotectal projections in the monkey: an autoradiographic study. Brain Res. 135: 147–152.

    Article  PubMed  CAS  Google Scholar 

  55. Hopkins, D. A. & Niessen, L. W., 1976. Substantia nigra projections to the reticular formation, superior colliculus and central gray in the rat, cat and monkey. Neurosci. Lett. 2: 253–259.

    Google Scholar 

  56. Rinvik, E., Grofova, I. & Otterson, O. P., 1976. Demonstration of nigrotectal and nigroreticular projections in the cat by axonal transport of proteins. Brain Res. 112: 388–394.

    Article  PubMed  CAS  Google Scholar 

  57. Vincent, S. R., Hattori, T. & McGeer, E. G., 1978. The nigrotectal projection: a biochemical and ultrastructural characterization. Brain Res. 151: 159–164.

    Article  PubMed  CAS  Google Scholar 

  58. DiChiara, G., Porceddu, M. L., Morelli, M., Muías, M. L. & Gessa, G. L., 1979. Evidence for a GABAergic projection from the substantia nigra to the ventromedial thalamus and to the superior colliculus of the rat. Brain Res. 176: 273–284.

    Article  CAS  Google Scholar 

  59. Kilpatrick, I. C., Starr, M. S„ Fletcher, A., James, T. A. & MacLeod, N. K., 1980. Evidence for a GABAergic nigro- thalamic pathway in the rat. I. Behavioral and Biochemical Studies. Exp. Brain Res. 40: 45–54.

    Google Scholar 

  60. MacLeod, N. K., James, T. A., Kilpatrick, I. C. & Starr, M. S., 1980. Evidence for a GABAergic nigrothalamic pathway in the rat. II. Electrophysiological studies. Exp. Brain Res. 40: 55–61.

    Article  PubMed  CAS  Google Scholar 

  61. Ribak, C. E., Vaughn, J. E., Saito, K., Barber, R. & Roberts, E., 1976. Immunocytochemical localization of glutamate decarboxylase in rat substantia nigra. Brain Res. 116: 287–298.

    Article  PubMed  CAS  Google Scholar 

  62. Hajdu, F., Hassler, R. & Bak, I. J., 1973. Electron microscopic study of the substantia nigra and the stria- nigral projection in the rat. Z. Zellforsch. Microsk. Anat. 146: 207–221.

    Google Scholar 

  63. McGeer, P. L., McGeer, E. G., Fibiger, H. C., Hattori, T., Singh, V. K. & Maler, L., 1974. Biochemical neuroanatomy of the basal ganglia. Adv. Behav. Biol. 10: 27–48.

    Google Scholar 

  64. Feltner, E. V., Meibach, R. C., Maayani, S. & Green, J. P., 1981. Radioautographic localization of 3H-5-HT and 3H- D-LSD binding sites on dopaminergic nigral-striatal neurons. Fed. Proc. 40: 265, Abst. #170.

    Google Scholar 

  65. Roberts, E., 1976. Disinhibition as an organizing principle in the nervous system: The role of the GABA system: Application to neurologic and psychiatric disorders. In: GABA in Nervous System Function. Raven Press, New York, pp. 515–540.

    Google Scholar 

  66. McLaughlin, B. J., Wood, J. G., Saito, K., Roberts, E. & Wu, J. Y., 1975. The fine structural localization of glutamate decarboxylase in developing axonal processes and presynaptic terminals of rodent cerebellum. Brain Res. 85: 355–371.

    Article  PubMed  CAS  Google Scholar 

  67. Fonnum, F., 1979. The localization of glutamate decarboxylase, choline acetyltransferase, and aromatic amino acid decarboxylase in mammalian and invertebrate nervous tissue. In: Metabolic Compartmentation and Neurotransmission ( S. Berl, D. D. Clarke and D. Schneider, eds.) Plenum Press, N.Y. pp. 99–122.

    Google Scholar 

  68. Miller, L. P. & Walters, J. R., 1979. Effects of depolarization on cofactor regulation of glutamic acid decarboxylase in substantia nigra synaptosomes. J. Neurochem. 33: 533–539.

    Article  PubMed  CAS  Google Scholar 

  69. Gold, B. I. & Roth, R. H., 1979. Glutamate decarboxylase activity in striatal slices: characterization of the increase following depolarization. J. Neurochem. 32: 883–888.

    Article  PubMed  CAS  Google Scholar 

  70. Machiyama, Y., Balazs, R. & Richter, D., 1967. Effects of K+-stimulation on GABA metabolism in brain slices in Vitro. J. Neurochem. 14: 591–594.

    Article  PubMed  CAS  Google Scholar 

  71. Mao, C. C. & Costa, E., 1978. Biochemical pharmacology of GABA transmission. In: Psychopharmacology: A Generation of Progress ( M. A. Lipton, A. DiMascio & K. F. Killam, eds.), Raven Press, New York, pp. 307–318.

    Google Scholar 

  72. Neff, N. H. & Costa, E., 1968. Application of steady-state kinetics to the study of catecholamine turnover after monoamine oxidase inhibition or reserpine administration. J. Pharmacol. Exp. Therap. 160: 40–47.

    CAS  Google Scholar 

  73. Tozer, T. N., Neff, N. H. & Brodie, B. B., 1966. Application of steady state kinetics to the synthesis rate and turnover time of serotonin in the brain of normal and reserpine- treated rats. J. Pharmacol. Exp. 153: 177–182.

    Google Scholar 

  74. Waddington, J. L. & Cross, A. J., 1978. Denervation supersensitivity in the striatonigral GABA pathway. Nature, Lond. 276: 618–620.

    Google Scholar 

  75. Guidotti, A., Gale, K., Suria, A. & Toffano, G., 1979. Biochemical evidence for two classes of GABA receptors in rat brain. Brain Res. 172: 566–571.

    Article  PubMed  CAS  Google Scholar 

  76. Iadarola, M. J. & Gale, K., 1979. Dissociation between drug-induced increases in nerve terminal and non-nerve terminal pools of GABA in vivo. Eur. J. Pharmacol. 59: 125–129.

    Google Scholar 

  77. Gale, K. & Iadarola, M. J., 1980. Seizure protection and increased nerveterminal GABA: Delayed effects of GABA transaminase inhibition. Science (Wash. DC) 208: 288–291.

    Google Scholar 

  78. Iadarola, M. J. & Gale, K., 1980. GABA-elevating agents: Comparison of neurochemical and anticonvulsant effects in rats. In: Advances in Epileptology: Xlth Epilepsy International Symposium ( R. Canger, F. Angeleri & K. J. Penry, eds.), Raven Press, New York, pp. 449–455.

    Google Scholar 

  79. Iadarola, M. J. & Gale, K., 1980. Evaluation of increase in nerve terminal-dependent vs. nerve terminal-independent compartments of GABA in vivo. Brain Res. Bull. 5: suppl. 2, 13–19.

    Google Scholar 

  80. Lloyd, K. G., Shibuya, M., Davidson, L. & Hornykiewicz, O., 1977. Chronic neuroleptic therapy: Tolerance and GABA systems. Adv. Bioc. Psychopharm. 16: 409–415.

    Google Scholar 

  81. Gale, K. & Bernstein, H., 1981. Loss of neurochemical responses to acute and chronic haloperidol in the intact caudate-putamen of rats with unilateral lesions of nigro-striatal dopamine pathways. Soc. Neurosci. Abs. 274: 3.

    Google Scholar 

  82. Vincent, S. R., Nagy, J. I. & Fibiger, H. C., 1978. Increased striatal glutamate decarboxylase after lesions of the nigro- striatal pathway. Brain Res. 143: 168–173.

    Article  PubMed  CAS  Google Scholar 

  83. Casu, M. &Gale, K., 1981. Synthesis of GAB A in caudate- putamen and substantia nigra in vivo: alterations induced by destruction of nigrostriatal dopamine neurons. Soc. Neurosci. Abst.

    Google Scholar 

  84. Schechter, P. J., Tränier, Y., Jung, M. J. & Bohlen, P., 1977. Audiogenic seizure protection by elevated brain GABA concentration in mice: effect of gamma-acetylenic GABA and gamma-vinyl GABA, two irreversible G AB A-T inhibitors. Eur. J. Pharmac. 45: 319–328.

    Google Scholar 

  85. Loscher, W., 1980. A comparative study of the pharmacology of inhibitors of GABA-metabolism. Naunyn-Schmied. Arch. Pharmacol. 315: 119–128.

    Article  CAS  Google Scholar 

  86. Lippert, B., Metcalf, B. W., Jung, M. J. & Casara, P., 1977. 4-Amino-hex-5-enoic acid, a selective catalytic inhibitor of 4-aminobutyric acid aminotransferase in mammalian brain. Eur. J. Biochem. 74: 441–445.

    Google Scholar 

  87. Casu, M. & Gale, K., 1981. Intracerebral injection of gamma-vinyl-GABA: Method for measuring rates of GABA synthesis in specific brain regions in vivo. Life Sci. 29: 681–688.

    Google Scholar 

  88. Mao, C. C., Cheney, D. L., Marco, E., Revuelta, A. & Costa, E., 1977. Turnover times of gamma-aminobutyric acid and acetylcholine in nucleus caudatus, nucleus ac- cumbens, globus pallidus and substantia nigra: effects of repeated administration of haloperidol. Brain Res. 132: 375–379.

    Article  PubMed  CAS  Google Scholar 

  89. Marco, E., Mao, C. C., Cheney, D. L., Revuelta, A. & Costa, E., 1976. The effects of antipsychotics on the turnover rate of GABA and acetylcholine in rat brain nuclei, Nature, Lond. 264: 363–365.

    Google Scholar 

  90. Moroni, F., Peralta, E. & Costa, E., 1978. Turnover rates of GABA in striatal structures: Regulation and pharmacological implications. In: GABA-Neuro-transmitters ( P. Krogsgaard-Larsen, J. Scheel-Kruger & H. Kofod, eds.), Munksgaard, Copenhagen, pp. 95–106.

    Google Scholar 

  91. Gale, K., 1980. Chronic blockade of dopamine receptors by antischizophrenic drugs enhances GABA binding in sub¬stantia nigra. Nature (Lond.) 283: 569–570.

    Article  CAS  Google Scholar 

  92. Gale, K., 1980. Alteration of GABA receptors in rat substantia nigra after chronic treatment with antischizo¬phrenic drugs. Brain Res. Bull. 5: Suppl. 2, 897–904.

    Google Scholar 

  93. Gale, K., 1980. Effects of chronic neuroleptic treatment on tyrosine hydroxylase in dopaminergic terminals: Comparisons between drugs and brain regions reveals different mechanisms of tolerance. In: Long-Term Effects of Neuroleptics, Pharmacological Basis and Clinical Implications ( G. Racagni, F. Cattabeni, P. F. Spano & E. Costa, eds.), Raven ress, New York. pp. 23–29.

    Google Scholar 

  94. Hauser, D. &Closse, A., 1978.3H-Clozapine binding to rat brain membranes. Life Sci. 23: 557–562.

    Google Scholar 

  95. Miller, R. J. & Hiley, C. R., 1974. Anti-muscarinic properties of neuroleptics and drug-induced Parkinsonism. Nature 248: 596–597.

    Article  PubMed  CAS  Google Scholar 

  96. Gerlach, J., Koppelhus, P., Helweg, E. & Monrad, A., 1974. Clozapine and haloperidol in a single-blind crossover trial: Therapeutic and biochemical aspects in the treatment of schizophrenia. Acta Psychiat. Scand. 50: 410–424.

    Google Scholar 

  97. Costall, B. & Naylor, R. J., 1975. Detection of the neuroleptic properties of clozapine, sulpiride and thioridazine. Psychopharmacology 43: 69–74.

    Article  CAS  Google Scholar 

  98. Scheel-Kruger, J., Arnt, J. & Magelund, G., 1977. Behavioral stimulation induced by muscimol and other GABA agonists injected into the substantia nigra. Neurosci. Lett. 4: 351–356.

    Google Scholar 

  99. Scheel-Kruger, J., Arnt, J., Braestrup, C., Christensen, A. V. & Magelund, G., 1978. Development of new animal models for GABAergic actions using muscimol as a tool. In: GABA-Neurotransmitters ( P. Krogsgaard-Larsen, J. Scheel-Kruger & H. Kofod, eds.), Munkgaard, Copenhagen, pp. 447–464.

    Google Scholar 

  100. Arnt, J. & Scheel-Kruger, J., 1979. GABAergic and glycinergic mechanisms within the substantia nigra: Pharmacological specificity of dopamine-independent contralateral turning behavior and interactions with other neurotransmitters. Psychopharm. 62: 267–277.

    Google Scholar 

  101. Oberlander, C., Duinont, C. & Boissier, J. R., 1977. Rotational behavior after unilateral intranigral injection of muscimol in rats. Eur. J. Pharmac. 43: 389–390.

    Article  CAS  Google Scholar 

  102. Dray, A. & Straughan, D. W., 1976. Synaptic mechanisms in the substantia nigra. J. Pharm. Pharmacol. 28: 400–405.

    Google Scholar 

  103. Aghajanian, G. K. & Bunney, B. S., 1975. Dopaminergic and nondopaminergic neurons of the substantia nigra: differential responses to putative transmitters. In: Neuro- psychopharmacology (J. R. Boissier, H. Hippius & D. Pichot, eds.), Excerpta Medica, Elsevier, Amsterdam, vol. 359: pp. 444–452.

    Google Scholar 

  104. Karabelas, A. B. & Purpura, D. P., 1979. Functional properties of dorsal raphe-substantia nigra projections in the cat. Soc. Neurosci., Abst. #238.

    Google Scholar 

  105. Guidotti, A., Gale, K., Hong, J. & Toffano, G., 1978. Models to study drug effects on the integrated function of GABAergic, peptidergic (substance P), and dopaminergic neurons. In: Interactions Between Putative Neurotransmitters in the Brain ( S. Garattini, J. F. Pujol & S. Samanin, eds.), Raven Press, New York, pp. 217–229.

    Google Scholar 

  106. Roth, R. H., Walters, J. R., Murrin, L. C. & Morgenroth, V. H., 1975. In: Pre- and Postsynaptic Receptors (E. Usdin & W. E. Bunney, eds.), Masrcel-Dekker, New York, pp. 5–48.

    Google Scholar 

  107. Bunney, B. S., Walters, J. R., Roth, R. H. & Aghajanian, G. K., 1973. Dopaminergic neurons: Effect of antipsychotic drugs and amphetamine on single cell activity. J. Pharmacol. Exp. Therap. 185: 560–571.

    Google Scholar 

  108. Anden, N. E., Butcher, S. G., Corrodi, H., Fuxe, K. & Ungerstedt, U., 1970. Receptor activity and turnover of dopamine and noradrenaline after neuroleptics. Eur. J. Pharmacol. 11: 303–314.

    Google Scholar 

  109. Zivkovic, B., Guidotti, A., Revuelta, A. & Costa, E., 1975. Effects of thioridazine, clozapine, and other antipsychotics on the kinetic state of tyrosine hydroxylase on the turnover rate of dopamine in striatum and nucleus accumbens. J. Pharmac. Exp. Ther. 194: 37–46.

    CAS  Google Scholar 

  110. Zivkovic, B. & Guidotti, A., 1974. Changes of kinetic constant of striatal tyrosine hydroxylase elicited by neuro¬leptics that impair the function of dopamine receptors. Brain Res. 79: 505–509.

    Article  PubMed  CAS  Google Scholar 

  111. Zivkovic, B., Guidotti, A. & Costa, E., 1974. Effects of neuroleptics on striatal tyrosine hydroxylase: Changes in affinity for the pteridine cofactor. Mol. Pharm. 10: 727–735.

    Google Scholar 

  112. Gale, K., Costa, E., Toffano, G., Hong, J. S. & Guidotti, A., 1978. Evidence for a role of nigral gamma-amino- butyric acid and substance P in the haloperidol-induced activation of striatal tyrosine hydroxylase. J. Pharmac. Exp. Ther. 206: 29–37.

    Google Scholar 

  113. Gale, K. & Guidotti, A., 1976. GABA-mediated control of rat neostriatal tyrosine hydroxylase revealed by intranigral muscimol. Nature, Lond. 263: 691–693.

    Article  CAS  Google Scholar 

  114. Tapia, R., 1975. Biochemical pharmacology of GABA in CNS. In: Handbook of Psychopharmacology, Plenum Press, New York, pp. 1–58.

    Google Scholar 

  115. Loscher, W. & Frey, H. H., 1978. Amino-oxyacetic acid: correlation between biochemical effects, anticonvulsant action and toxicity in mice. Biochem. Pharmacol. 27: 103–108.

    Google Scholar 

  116. Godin, Y., Heiner, L., Mark, J. & Mandel, P., 1969. Effects of di-n-propylacetate, an anticonvulsive compound, on GABA metabolism. J. Neurochem. 16: 869–873.

    Article  PubMed  CAS  Google Scholar 

  117. Sawaya, M. C. B., Horton, R. W. & Meldrum, B. S., 1975. Effects of anticonvulsant drugs on the cerebral enzymes metabolizing GABA. Epilepsia 16: 649–655.

    Article  PubMed  CAS  Google Scholar 

  118. Sarhan, S. & Seiler, N., 1979. Metabolic inhibitors and subcellular distribution of GABA. J. Neurosci. Res. 4: 399–421.

    Google Scholar 

  119. Waniewski, R. A. & Suria, A., 1977. Alterations in gamma- aminobutyric acid content in the rat superior cervical ganglion and pineal gland. Life Sci. 21: 1129–1142.

    Article  PubMed  CAS  Google Scholar 

  120. Wood, J. D., Kurylo, E. & Newstead, J. D., 1978. Aminooxyacetic acid induced changes in gamma-amino- butyrate metabolism at the subcellular level. Canadian J. Biochem. 56: 667–672.

    Google Scholar 

  121. Gale, K. & Iadarola, M. J., 1980. Drug-induced elevation of GABA after intracerebral microinjection: Site of anticonvulsant action. Eur. J. Pharmacol. 68: 233–235.

    Article  PubMed  CAS  Google Scholar 

  122. Walters, J. R., Lakoski, J. M., Eng, N. & Waszczak, B. L., 1978. Effect of muscimol, AO A A and Na valproate on the activity of dopamine neurons and dopamine synthesis. In: GABA-Neurotransmitters, Alfred Benzon Symposium, ed. by P. Krogsgaard-Larsen, J. Scheel-Kruger and H. Kofod, pp. 119–133, Munksgaard, Copenhagen, 1978.

    Google Scholar 

  123. Scheel-Kruger, J., Arnt, J., Braestrup, C., Christensen, A. V. & Magelund, G., 1978. Development of new animal models for GABAergic actions using muscimol as a tool. In: GABA-Neutrotransmitters, Alfred Benzon Sympo¬sium, ed. by P. Krogsgaard-Larsen, J. Scheel-Kruger and H. Kofod, pp. 447 - 464, Munksgaard, Copenhagen.

    Google Scholar 

  124. Bartholini, G., Scatton, B., Zivkovic, B. & Lloyd, K. G., 1978. On the mode of action of SL 76002, a new GABA receptor agonist. In: GABA Neurotransmitters ( P. Krogsgaard-Larsen, J. Scheel-Kruger & H. Kofod, eds.). Munkgaard, Copenhagen pp. 326 - 329.

    Google Scholar 

  125. Palfreyman, M. G., Huot, S., Lippert, B. & Schechter, P. J., 1978. GABA-Dopamine interactions: Studies using a new enzyme-activated irreversible inhibitor of GABA transaminase, gamma-acetylenic-GABA. In: GABA Neurotransmitters ( P. Krogsgaard-Larsen, J. Scheel-Kruger & H. Kofod, eds.), Munksgaard, Copenhagen, pp. 432–446.

    Google Scholar 

  126. Waldmeier, P. C., personal communication.

    Google Scholar 

  127. Matsui, Y. & Kamioka, T., 1978. The effects of elevating gamma-amino butyrate content in substantia nigra on the behavior of rats. Eur. J. Pharmacol. 50: 243–251.

    Google Scholar 

  128. Biggio, G., Casu, M., Corda, M. G., Vernaleone, F. & Gessa, G. L., 1977. Effect of muscimol, a GABA mimetic agent, on dopamine metabolism in the mouse brain, Life Sci. 21: 525–532.

    Article  PubMed  CAS  Google Scholar 

  129. Carlsson, A., Biswas, B. & Lindquist, M., 1977. Influence of GABA and GABA-like drugs on monoaminergic mechanisms. Adv. Bioc. Psychopharm. 16: 471–475.

    Google Scholar 

  130. Cheramy, A., Nieoullon, A. & Glowinski, J., 1978. GABAergic processes involved in the control of dopamine release from nigrostriatal dopaminergic neurons in the cat. Eur. J. Pharmacol. 48: 281–295.

    Google Scholar 

  131. Martin, G. E. & Haubrich, D. R., 1978. Striatal dopamine release and contraversive rotation elicited by intranigrally applied muscimol. Nature 275: 230 - 231.

    Article  PubMed  CAS  Google Scholar 

  132. MacNeil, D., Gower, M. & Szymanska, I., 1978. Response of dopamine neurons in substantia nigra to muscimol. Brain Res. 154: 401–403.

    Article  PubMed  CAS  Google Scholar 

  133. Grace, A. A. & Bunney, B. S., 1979. Paradoxical GABA excitation of nigral dopaminergic cells: indirect mediation through reticulata inhibitory neurons. Eur. J. Pharmacol. 59: 211–218.

    Google Scholar 

  134. Waszczak, B., Eng,.N. & Walters, J. R., 1980. Effects of muscimol and Picrotoxin on single unit activity of substantia nigra neurons. Brain Research 188: 185–197.

    CAS  Google Scholar 

  135. Waszczak, B. L. & Walters, J. R., 1980. Do substantia nigra pars reticulata neurons become supersensitive to GABAergic drugs after striatal kainic acid lesions? Poster presentation at 10th Annual Mtg. of Soc. Neurosci. Cincinnati, Ohio.

    Google Scholar 

  136. Soubrie, P., Montastruc, J. L., Bourgoin, S., Reisine, T., Artaud, F. & Glowinski, J., 1981. In vivo evidence for GABAergic control of serotonin release in the cat substantia nigra. Eur. J. Pharmacol. 69: 483–488.

    Google Scholar 

  137. Giambalvo, C. T. & Snodgrass, S. R., 1978. Biochemical and behavioral effects of serotonin neurotoxins on the nigrostriatal dopamine system: Comparison of injection sites. Brain Research 152: 555–566.

    Article  PubMed  CAS  Google Scholar 

  138. Bentivoglio, M., Van der Kooy, D., Kuypers, H. G. J. M., 1979. The organization of the efferent projections of the substantia nigra of the rat. A retrograde fluorescent double labelling study. Brain Res. 174: 1–17.

    Google Scholar 

  139. Anderson, M. & Yoshida, M., 1977. Electrophysiological evidence for branching nigral projections to the thalamus and superior colliculus. Brain Res. 137: 361–364.

    Article  PubMed  CAS  Google Scholar 

  140. Deniau, J. M., Hammond, C., Riszk, A. & Feger, J., 1978. Electrophysiological properties of identified output neurons in the rat substantia nigra (pars compacta and pars reticulata): Evidence for the existence of branched neurons. Exp. Brain Res. 32: 409–422.

    Google Scholar 

  141. Guyenet, P. G. & Aghajanian, G. K., 1978. Antidromic identification of dopaminergic and other output neurones of the rat substantia nigra. Brain Res. 150: 69 - 84.

    Article  PubMed  CAS  Google Scholar 

  142. Yoshida, M. & Omata, S., 1979. Blocking by Picrotoxin of nigra-evoked inhibition of neurons of ventromedial nucleus of the thalamus. Experientia 35: 794.

    Article  PubMed  CAS  Google Scholar 

  143. Ueki, A., Uno, M., Anderson, M. & Yoshida, M., 1977. Monosynaptic inhibition of thalamic neurons produced by stimulation of the substantia nigra. Experientia 33: 1480–1482.

    Article  PubMed  CAS  Google Scholar 

  144. Karabelas, A. B. & Purpura, D. P., 1980. Axon collaterals of substantia nigra pars reticulata neurons. Soc. Neurosci. Abst. #124. 7.

    Google Scholar 

  145. Gale, K., 1979. GABA receptors in rat substantia nigra: changes in response to lesions and chronic drug treatment. Soc. Neurosci. Abstr. No. 231.

    Google Scholar 

  146. Motamedi, F. & York, D. H., 1978. A descending pathway involving nigral-induced head turning movements. Soc. Neurosci. Abstract #142.

    Google Scholar 

  147. York; D.H. & Faber, J. E., 1977. An electrophysiological study of nigrotectal relationships: a possible role in turning behavior. Brain Research 130: 383–386.

    Article  PubMed  CAS  Google Scholar 

  148. Arnt, J., Scheel-Kruger, J., Magelund, G. & Krogsgaard- Larsen, P., 1979. Muscimol and related GABA receptor agonists: the potency of GABAergic drugs in vivo determined after intranigral injection. J. Pharm. Pharmacol. 31: 306–313.

    Google Scholar 

  149. DeMontis, G. M., Olianas, M. C., Serra, G., Tagliamonte, A. & Scheel-Kruger, J., 1979. Evidence that a nigral GABAergic-cholinergic balance controls posture. Eur. J. Pharmacol. 53: 181–190.

    Google Scholar 

  150. Klawans, H. L. & Rubovits, R., 1972. An experimental model of tardive dyskinesia. J. Neural Transm. 33: 235–246.

    Article  PubMed  Google Scholar 

  151. Tarsy, D. & Baldessarini, R. J., 1974. Behavioral super¬sensitivity to apomorphine following chronic treatment with drugs which interfere with the synaptic function of the catecholamines. Neuropharm. 13: 927–940.

    Article  CAS  Google Scholar 

  152. Creese, I., Burt, D. R. & Snyder, S. H., 1977. Dopamine receptor binding enhancement accompanies lesion-induced behavioral supersensitivity. Science 197: 596–598.

    Article  PubMed  CAS  Google Scholar 

  153. Ungerstedt, U., 1971. Postsynaptic supersensitivity after 6-hydroxydopamine induced degeneration of the nigrostriatal dopamine system in the rat brain. Acta Physiol. Scand. 82: Suppl. 367: 69–93.

    CAS  Google Scholar 

  154. Gale, K., Guidotti, A. & Costa, E., 1977. Dopamine- sensitive adenylate cyclase: Location in substantia nigra. Science 195: 503–505.

    Google Scholar 

  155. Premont, J., Thierry, A. M., Tassin, J. P., Glowinski, J., Blanc, G. & Bockaert, J., 1976. FEBS Letters 68: 99–104.

    Article  PubMed  CAS  Google Scholar 

  156. Kozlowski, M. R., Sawyer, S. & Marshall, J. F., 1980. Behavioral effects and supersensitivity following nigral dopamine receptor stimulation. Nature, Lond. 287: 52–54.

    Google Scholar 

  157. List, S. & Seeman, P., 1980. Neuroleptic/Dopamine receptors: Elevation and reversal. Adv. Bioc. Psychopharmacol. 24: 95–101.

    CAS  Google Scholar 

  158. Neve, K., personal communication.

    Google Scholar 

  159. Staunton, D. A., Wolfe, B. B., Groves, P. M. & Moliinoff, P. B., 1981. Dopamine receptor changes following destruction of the nigrostriatal pathway: Lack of a relationship to rotational behavior. Brain Research 211: 315–327.

    Google Scholar 

  160. Mailman, R. B., Kilts, C. D., Beamont, K. & Breese, G. R., 1981. ‘Supersensitivity’of dopamine systems: Comparisons between haloperidol withdrawal, intracisternal, and unilateral 6-hydroxydopamine treatments. Fed. Proc. 40: 291.

    Google Scholar 

  161. Bartholini, G., Scatton, B. & Zivkovic, B., 1980. Effect of the new gamma-aminobutyric acid agonist SL 76002 on striatal acetylcholine: Relation to neuroleptic-induced extrapyramidal alterations. Adv. Bioc. Psychopharm. 24: 207–213.

    Google Scholar 

  162. Ferkany, J. W., Strong, R. & Enna, S. J., 1980. Dopamine receptor supersensitivity in the corpus striatum following chronic elevation of brain gamma-aminobutyric acid. J. Neurochem.

    Google Scholar 

  163. Lloyd, K. G. & Worms, P., 1980. Sustained gamma- aminobutyric acid receptor stimulation and chronic neuroleptic effects. Adv. Bioc. Psychopharm. 24: 253–258.

    CAS  Google Scholar 

  164. Baldessarini, R. J. & Tarsy, D., 1978. Tardive dyskinesia. In: Psychopharmacology: A Generation of Progress ( M. A. Lipton, A. DiMascio & K. F. Killam, eds.), Raven Press, N.Y. pp. 993–1004.

    Google Scholar 

  165. Marsden, C. D., Tarsy, D. & Baldessarini, R. J., 1975. Spontaneous and drug-induced movement disorders in psychiatric patients. In: Psychiatric Aspects of Neurologic Disease ( D. F. Benson & D. Blumers, eds.), Grune and Stratton, N.Y. pp. 219–265.

    Google Scholar 

  166. Nair, N. P. V., Lai, S., Schwartz, G. & Thavundayil, J. X., 1980. Effect of sodium valproate and baclofen in tardive dyskinesia: clinical and neuroendocrine studies. Adv. Bioc. Psychopharm. 24: 437–441.

    Google Scholar 

  167. Hiley, C. R. & Bird, E. D., 1974. Decreased muscarinic receptor concentration in postmortem brain in Huntington’s chorea. Brain Res. 80: 355–358.

    Article  PubMed  CAS  Google Scholar 

  168. Reisine, T. D., Fields, J. Z., Stern, L. Z., Johnson, P. C., Bird, E. D. & Yamamura, H. I., 1977. Alterations in dopaminergic receptors in Huntington’s disease. Life Sci. 21: 1123–1128.

    Article  PubMed  CAS  Google Scholar 

  169. Enna, S. J., Bennet, J. P., Bylund, D. B., Bird, E. D., Iversen, L. L. & Snyder, S. H., 1976. Alterations of brain neurotransmitter receptor binding in Huntington’s chorea. Brain Res. 116: 531–537.

    Article  PubMed  CAS  Google Scholar 

  170. Kanazawa, I., Bird, E., O’Connell, R. & Powell, D., 1977. Evidence for decrease in substance P content of substantia nigra in Huntingtone’s chorea. Brain Res. 120: 387–392.

    Article  PubMed  CAS  Google Scholar 

  171. Lange, H., Thorner, G., Hopf, A. & Schroder, K. F., 1976. Morphometric studies of the neuropathological changes in choreatic diseases. J. Neurol. Sci. 28: 401–425.

    Google Scholar 

  172. Dom, R., Baro, F. & Brucher, J. M., 1973. A cytometric study of the putamen in different types of Huntington’s chorea. Adv. Neurol. 1: 369–385.

    Google Scholar 

  173. Enna, S. J. & Snyder, S. H., 1977. Influence of ions, enzymes and detergents on gamma-aminobutyric acid receptor binding in synaptic membranes of rat brain. Molec. Pharmac. 13: 442–453.

    CAS  Google Scholar 

  174. Toffano, G., Guidotti, A. & Costa, E., 1978. Purification of an endogenous protein inhibitor for the high binding affinity of gamma-aminobutyric acid to synaptic membranes of rat brain. Proc. Nat. Acad. Sci., U.S.A. 75: 4024–4028.

    Google Scholar 

  175. Gale, K., 1981. Relationship between the presence of dopaminergic neurons and GABA receptors in substantia nigra: Effects of lesions. Brain Res. 210: 401–406.

    Article  PubMed  CAS  Google Scholar 

  176. Casu, M.& Gale, K., 1981. Effects of gamma-vinyl-GABA on dopamine neurons: Relationship between elevation of GABA in nerve terminals and change in tyrosine hydroxylase activity. Fed. Proc. 40: 290.

    Google Scholar 

  177. Gale, K. & Bernstein, H., 1980. Development of supersensitive GABA receptors in substantia nigra after either chronic blockade of dopamine receptors or destruction of nigrostriatal dopamine neurons. Soc. Neurosci. Abst. #124. 9.

    Google Scholar 

  178. Casu, M. & Gale, K., 1981. Differential effects of GABA- elevating agents on the neuroleptic-induced activation of striatal tyrosine hydroxylase: Evidence that di-n-propyl- acetate augments GABAergic neurotransmission. J. Pharm. Exp. Therap. 217: 177–180.

    Google Scholar 

  179. Childs, J. A. & Gale, K., 1981. Neurochemical characterization of the nigrotegmental projections in the rat. Soc. Neurosci. Abst. 64: 21.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

V. A. Najjar

Rights and permissions

Reprints and permissions

Copyright information

© 1981 Martinus Nijhoff/Dr W. Junk Publishers, The Hague

About this chapter

Cite this chapter

Gale, K., Casu, M. (1981). Dynamic utilization of GABA in substantia nigra: regulation by dopamine and GABA in the striatum, and its clinical and behavioral implications. In: Najjar, V.A. (eds) The Biological Effects of Glutamic Acid and Its Derivatives. Developments in Molecular and Cellular Biochemistry, vol 1. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-8027-3_24

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-8027-3_24

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-009-8029-7

  • Online ISBN: 978-94-009-8027-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics