Skip to main content

Enzymes Oxidizing Carbon Monoxide

  • Conference paper
Gas Enzymology

Abstract

Carbon monoxide is oxidized by bacteria from different physiological groupings, including both, aerobes and anaerobes. The groups of CO-oxidizing bacteria are carboxydotrophs, methanotrophs, dinitrogen-fixers, acetogens, methanogens, phototrophs and sulfate- reducers. Some can use CO as sole carbon and energy source for growth (utilitarian CO-oxidizers) whereas the gas is only co-oxidized by others (non-utilitarian CO-oxidizers). Enzymes that Catalyze the oxidation of CO to CO2 may be subdivided according to whether they contain molybdenum or nickel as an integral component of their active center. To date molybdenum-containing CO dehydrogenases have been identified in Pseudomonas carboxydovorans, Pseudomonas carboxydohydrogena, Pseudomonas carboxydoflava and Bacillus schlegelii. In addition, these enzymes contain the molybdopterin of the molybdenum cofactor, flavin and two different iron-sulfur centers of the (2Fe-2S) type. Nickel-containing CO dehydrogenases have been found in Clostridium thermoaceticum, Acetobacterium woodii, Methanosarcina barkeri, and Desulfovibrio desulfuricans; most of them contain (4Fe-4S) centers, no flavin, and they are extremely sensitive to oxygen. The cofactor composition of CO dehydrogenases from aerobic bacteria appears to be much more complex than that of most enzymes from anaerobes. It is obvious, that CO dehydrogenases of aerobes are molybdenum iron-sulfur flavoproteins (molybdenum hydroxylases), whereas those of anaerobes are nickel iron-sulfur enzymes. The divergent cofactor composition of CO dehydrogenases as well as significant differences in the affinity for CO reflect the quite different functions that are fulfilled by these enzymes in the bacterial groupings mentioned.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Baross, J.A., M.D. Lilley, & L.I. Gordon. 1982. Is the CH4, H2 and CO venting from submarine hydrothermal systems produced by thermophilic bacteria? Nature 298: 366–368

    Article  CAS  Google Scholar 

  • Bundesminister für Forschung und Technologie. 1983. BMFT-Report. Unsere Umwelt schützen. Postfach 20 07 06, 5300 Bonn 2

    Google Scholar 

  • Bray, R.C., G.N. George, R. Lange, & O. Meyer. 1983. Studies by e.p.r. spectroscopy of carbon monoxide oxidases from Pseudomonas carboxydovorans and Pseudomonas carboxydohydrogena. Biochem. J. 211: 687–694

    CAS  Google Scholar 

  • Chappelle, E.W. 1962. Carbon monoxide metabolism. Dev. Ind. Microbiol. 3: 99–122

    CAS  Google Scholar 

  • Colby, J., H. Dalton, & R. Whittenbury. 1979. Biological and biochemical aspects of microbial growth on C1 compounds. Ann. Rev. Microbiol. 33: 481–517

    Article  CAS  Google Scholar 

  • Conrad, R., O. Meyer, & W. Seiler. 1981. Role of carboxydobacteria in consumption of atmospheric carbon monoxide by soil. Appl. Environm. Microbiol. 42: 211–215

    CAS  Google Scholar 

  • Conrad, R. & W. Seiler. 1982. Utilization of traces of carbon monoxide by aerobic oligotrophic microorganisms in ocean, lake and soil. Arch. Microbiol. 132: 41–46

    Article  CAS  Google Scholar 

  • Conrad, R. 1984. Capacity of aerobic microorganisms to utilize and grow on atmospheric trace gases (H2, CO, CH4). In: Current perspectives in microbial ecology, published by the ASM, in press

    Google Scholar 

  • Cypionka, H., O. Meyer, & H.G. Schlegel. 1980. Physiological characteristics of various species of strains of carboxydobacteria. Arch. Microbiol. 127: 301–307

    Article  CAS  Google Scholar 

  • Cypionka, H. & O. Meyer. 1982. Influence of carbon monoxide on growth and respiration of carboxydobacteria and other aerobic organisms. FEMS Microbiol. Lett. 15: 209–214

    Article  CAS  Google Scholar 

  • Cypionka, H. & O. Meyer. 1983. The cytochrome composition of carboxydotrophic bacteria. Arch. Microbiol. 135: 293–298

    Article  CAS  Google Scholar 

  • Cypionka, H. & O. Meyer. 1983b. Carbon monoxide-insensitive respiratory chain of Pseudomonas carboxydovorans. J. Bacteriol. 156: 1178–1187

    CAS  Google Scholar 

  • Cypionka, H. & O. Meyer. 1983b. Carbon monoxide-insensitive respiratory chain of Pseudomonas carboxydovorans. J. Bacteriol. 156: 1178–1187

    CAS  Google Scholar 

  • Dalton, H. & D.J. Leak. 1984. Methane oxidation by microorganisms. In: R.K. Poole & C.S. Dow (eds.) Microbial gas metabolism: mechanistic, metabolic and biotechnical aspects. Academic Press, New York, in press

    Google Scholar 

  • Dalton, H., S.D. Prior, D.J. Leak, & S.H. Stanley. 1984. Regulation and control of methane monooxygenase. In: R.L. Crawford & R.S. Hanson (eds.) Microbial growth on C1 compounds. Proceedings of the 4th Int. Symp. ASM.

    Google Scholar 

  • Daniels, L., G. Fuchs, R.K. Thauer, & J.G. Zeikus. 1977. Carbon monoxide oxidation by methanogenic bacteria. J. Bacteriol. 132: 118–126

    CAS  Google Scholar 

  • Diekert, G.B., E.G. Graf, & R.K. Thauer. 1979. Nickel requirement for carbon monoxide dehydrogenase formation in Clostridium pasteurianum. Arch. Microbiol. 122: 117–120

    Article  CAS  Google Scholar 

  • Diekert, G. & M. Ritter. 1982. Nickel requirement of Acetobacterium woodii. J. Bacteriol. 151: 1043–1045

    CAS  Google Scholar 

  • Diekert, G. & M. Ritter. 1983. Purification of the nickel protein carbon monoxide dehydrogenase of Clostridium thermoaceticum. FEBS Lett. 151: 41–44

    Article  CAS  Google Scholar 

  • Diekert, G. & M. Ritter. 1983b. Carbon monoxide fixation into the carboxyl group of acetate during growth of Acetobacterium woodii on H2 and C02. FEMS Microbiol. Lett. 17: 299–302

    Article  CAS  Google Scholar 

  • Diekert, G. & R.K. Thauer. 1978. Carbon monoxide oxidation by Clostridium thermoaceticum and Clostridium formicoaceticum. J. Bacteriol. 136: 597–606

    CAS  Google Scholar 

  • Drake, H.L. 1982. Occurrence of nickel in carbon monoxide dehydrogenase from Clostridium pasteurianum and Clostridium thermoaceticum. J.Bacteriol. 149: 561–566

    CAS  Google Scholar 

  • Drake, H.L., S.-I. Hu, & H.G. Wood. 1980. Purification of carbon monoxide dehydrogenase, a nickel enzyme from Clostridium thermoaceticum. J. Biol. Chem. 255: 7174–7180

    CAS  Google Scholar 

  • Ferenci, T. 1974. Carbon monoxide-stimulated respiration in methane-utilizing bacteria. FEBS Lett. 41: 94–98

    Article  CAS  Google Scholar 

  • Ferenci, T. 1975. The non-growth oxidation of carbon monoxide by Pseudomonas methanica and its relevance to studies of methane oxidation. In: H.G. Schlegel, G. Gottschalk & N. Pfennig (eds.) Microbial production and utilization of gases. Goltze K.G., Göttingen, p. 371–378

    Google Scholar 

  • Ferenci, T., T. Strøm, & J.R. Quayle. 1975. Oxidation of carbon monoxide and methane by Pseudomonas methanica. J. gen. Microbiol. 91: 79–91

    CAS  Google Scholar 

  • Fuchs, G., U. Schnitker, & R.K. Thauer. 1974. Carbon monoxide oxidation by growing cultures of Clostridium pasteurianum. Eur. J. Biochem. 49: 11–115

    Article  Google Scholar 

  • Fuchs, G., G. Andress, & R.K. Thauer. 1975. CO-oxidation by anaerobic bacteria: Indications for the involvement of a vitamin B12 compound. In: H.G. Schlegel, G. Gottschalk, & N. Pfennig (eds.) Microbial production and utilization of gases. Goltze K.G., Göttingen

    Google Scholar 

  • Hegeman, G. 1980. Oxidation of carbon monoxide by bacteria. TIBS: 256–259

    Google Scholar 

  • Hu, S.-I., H.L. Drake, & H.G. Wood. 1982. Synthesis of acetyl coenzyme A from carbon monoxide, methyltetrahydrofolate, and coenzyme A by enzymes from Clostridium thermoaceticum. J. Bacteriol. 149: 440–448

    CAS  Google Scholar 

  • Hubley, J.H., J.H. Mitton, & J.F. Wilkinson. 1974. The oxidation of carbon monoxide by methane-oxidizing bacteria. Arch. Microbiol. 95: 365–368

    Article  CAS  Google Scholar 

  • Johnson, J.L. & K.V. Rajagopalan. 1982. Structural and metabolic relationship between the molybdenum cofactor and urothione. Proc. Natl. Acad. Sci. U.S.A. 79: 6856–6860

    Article  CAS  Google Scholar 

  • Kenealy, W.R. & J.G. Zeikus. 1982. One-carbon metabolism in methanogens: Evidence for synthesis of a two-carbon cellular intermediate and unification of catabolism and anabolism in Methanosarcina barkeri. J. Bacteriol. 151: 932–941

    CAS  Google Scholar 

  • Khalil, M.A.K. & R.A. Rasmussen. 1984. Carbon monoxide in the earth’s atmosphere: Increasing trend. Science 224: 54–56

    Article  CAS  Google Scholar 

  • Kiessling, M. & O. Meyer. 1982. Profitable oxidation of carbon monoxide or hydrogen during heterotrophic growth of Pseudomonas carboxydoflava. FEMS Microbiol. Lett. 13: 333–338

    Article  CAS  Google Scholar 

  • Kim, Y.M. & G.D. Hegeman. 1981. Purification and properties of carbon monoxide dehydrogenase from Pseudomonas carboxydohydrogena. J. Bacteriol. 148: 904–911

    CAS  Google Scholar 

  • Kim, Y.M. & G.D. Hegeman. 1983. Electron transport system of an aerobic carbon monoxide-oxidizing bacterium. J. Bacteriol. 148: 991–994

    Google Scholar 

  • Kim, Y.M. & G.D. Hegeman. 1983b. Oxidation of carbon monoxide by bacteria. Int. Rev. Cytol. 81: 1–32

    Article  CAS  Google Scholar 

  • Kim, Y.M., S. Kirkconnell, & G. Hegeman. 1982. Immunological relationships among carbon monoxide dehydrogenases of carboxydobacteria. FEMS Microbiol. Lett. 13: 219–223

    Article  CAS  Google Scholar 

  • Kohler, H.-P.E. & A.J.B. Zehnder. 1984. Carbon monoxide dehydrogenase and acetate thiokinase in Methanothrix soehngenii. FEMS Microbiol. Lett. 21: 287–292

    Article  CAS  Google Scholar 

  • KrÜger, B. & O. Meyer. 1984. Thermophilic Bacilli gowing with carbon monoxide. Arch. Microbiol., in press

    Google Scholar 

  • Krzycki, J.A., R.H. Wolkin, & J.G. Zeikus. 1982. Comparison of unitrophic and mixotrophic substrate metabolism by an acetate-adapted strain of Methanosarcina barkeri. J.Bacteriol. 149: 247–254

    CAS  Google Scholar 

  • Krzycki, J.A. & J.G. Zeikus. 1984. Characterization and purification of carbon monoxide dehydrogenase from Methanosarcina barkeri. J.Bacteriol. 158: 231–237

    CAS  Google Scholar 

  • Langdon, S.E. 1917. Carbon monoxide occurrence free in Kelp. J.Amer. Chem. Soc. 39: 149–156

    Article  CAS  Google Scholar 

  • Meyer. O. 1982. Chemical and spectral properties of carbon monoxide:methylene blue oxidoreductase. The molybdenum-containing iron-sulfur flavoprotein from Pseudomonas carboxydovorans. J. Biol. Chem. 257: 1333–1341

    CAS  Google Scholar 

  • Meyer, O. 1984. Metabolism of aerobic carbon monoxide-utilizing bacteria. In: R.K. Poole (ed.) Microbial gas metabolism — mechanistic, metabolic and biotechnical aspects. Reading, in press

    Google Scholar 

  • Meyer, O. & K.V. Rajagopalan. 1984. Molybdopterin in carbon monoxide oxidase from carboxydotrophic bacteria. J. Bacteriol. 157: 643–648

    CAS  Google Scholar 

  • Meyer, O. & K.V. Rajagopalan. 1984b. Selenite binding to carbon monoxide oxidase from Pseudomonas carboxydovorans. Selenium binds covalently to the protein and activates specifically the CO →methylene blue reaction. J. Biol. Chem. 259: 5612–5617

    CAS  Google Scholar 

  • Meyer, O. & K.V. Rajagopalan. 1984b. Selenite binding to carbon monoxide oxidase from Pseudomonas carboxydovorans. Selenium binds covalently to the protein and activates specifically the CO →methylene blue reaction. J. Biol. Chem. 259: 5612–5617

    CAS  Google Scholar 

  • Meyer, O. & M. Rohde. 1984. Enzymology and bioenergetics of carbon monoxide-oxidizing bacteria, In: R.L. Crawford & R.S. Hanson (eds.) Microbial growth on C1 compounds. Proc. 4th Int. Symp. ASM

    Google Scholar 

  • Meyer, O. & H.G. Schlegel. 1978. Reisolation of the carbon monoxide utilizing hydrogen bacterium Pseudomonas carboxydovorans (Kistner) comb.nov. Arch. Microbiol. 118: 35–43

    Article  CAS  Google Scholar 

  • Meyer, O. & H.G. Schlegel. 1979. Oxidation of carbon monoxide in cell extracts of Pseudomonas carboxydovorans. J. Bacteriol. 137: 811–817

    CAS  Google Scholar 

  • Meyer, O. & H.G. Schlegel. 1980. Carbon monoxide:methylene blue oxidoreductase from Pseudomonas carboxydovorans. J. Bacteriol. 141: 74–80

    CAS  Google Scholar 

  • Meyer, O. & H.G. Schlegel. 1983. Biology of aerobic carbon monoxide- oxidizing bacteria. Annu. Rev. Microbiol. 37: 277–310

    Article  CAS  Google Scholar 

  • Moissan, M.H. 1921. Sur la présence de l’argon, de l’oxyde de carbone et des carbures d’hydrogéne dans les gaz des fumerolles du Mont-Pelé, à la Martinique. Bull. Soc. Chim. de France 29: 434–437

    Google Scholar 

  • Nozhevnikova, A.N. & L.N. Yurganov. 1978. Microbiological aspects of regulating the carbon monoxide content in the earth’s atmosphere. In. M. Alexander (ed.) Advances in microbial ecology. Plenum, New York, p. 203–238

    Google Scholar 

  • Ragsdale,S.W., L.G.Ljungdahl, & D.V.DerVartanian. 1982. EPR evidence for nickel-substrate interaction in carbon monoxide dehydrogenase from Clostridium thermoaceticum. Biochem. Biophys. Res. Comm. 108: 658–663

    Article  CAS  Google Scholar 

  • Ragsdale, S.W., J.E. Clark, L.G. Ljungdahl, L.L. Lundie, & H.L. Drake. 1983. Properties of purified carbon monoxide dehydrogenase from Clostridium thermoaceticum, a nickel, iron-sulfur protein. J. Biol. Chem. 258: 2364–2369

    CAS  Google Scholar 

  • Ragsdale, S.W., L.G. Ljungdahl, & D.V. DerVartanian. 1983b. Isolation of carbon monoxide dehydrogenase from Acetobacterium woodii and comparison of its properties with those of the Clostridium thermoaceticum enzyme. J. Bacteriol. 155: 1224–1237

    CAS  Google Scholar 

  • Ragsdale, S.W., L.G. Ljungdahl, & D.V. DerVartanian. 1983c. 13C and 63Ni isotope substitutions confirm the presence of a Ni(III)-carbon species in acetogenic CO dehydrogenases. Biochem. Biophys. Res. Comm. 115: 658–665

    Article  CAS  Google Scholar 

  • Rohde, M. 1983. Immunelektronenmikroskopische Untersuchung der in situ Lokalisierung von Kohlenmonoxid-Oxidase aus Pseudomonas carboxydovorans mit Hilfe der Immunferritin- und der Protein A-Gold Technik. Ph.D. thesis, Göttingen

    Google Scholar 

  • Rohde, M., F. Mayer, & O. Meyer. 1984. Immunocytochemical localization of carbon monoxide oxidase in Pseudomonas carboxydovorans. J. Biol. Chem., submitted for publication

    Google Scholar 

  • Schönheit, P. J.Moll, & R.K. Thauer. 1979. Nickel, cobalt, and molybdenum requirement for growth of Methanobacterium thermoautotrophicum. Arch.Microbiol. 123: 105–107

    Article  Google Scholar 

  • Seiler, W. 1974. The cycle of atmospheric CO. Tellus 26: 116–135

    Article  CAS  Google Scholar 

  • Seiler, W. 1978. The influence of the biosphere on the atmospheric CO and H2 cycles. In: W.E. Krumbein (ed.) Environmental biogeochemistry and geomicrobiology, vol. 3. Ann Arbor Science Pbl., Ann Arbor, 773–810

    Google Scholar 

  • Stupperich, E., K.E. Hammel, G. Fuchs, & R.K. Thauer. 1983. Carbon monoxide fixation into the carboxyl group of acetyl coenzyme A during autotrophic growth of Methanobacterium. FEBS Lett. 152: 21–23

    Article  CAS  Google Scholar 

  • Stupperich, E. & G. Fuchs. 1983. Autotrophic acetyl coenzyme A synthesis in vitro from two CO2 in Methanobacterium. FEBS Lett. 156: 345–348

    Article  CAS  Google Scholar 

  • Thauer, R.K., A. Brandis-Heep, G. Diekert, H.-H. Gilles, E.G. Graf, R. Jaenchen, & P. Schönheit. 1983. Drei neue Nickelenzyme aus anaeroben Bakterien. Naturwissenschaften 70: 60–64

    Article  CAS  Google Scholar 

  • Uffen, R.L. 1976. Anaerobic growth of a Rhodopseudomonas species in the dark with carbon monoxide as sole carbon and energy substrate. Proc. Natl. Acad. Sci. U.S.A. 73: 3298–3302

    Article  CAS  Google Scholar 

  • Uffen, R.L. 1981. Metabolism of carbon monoxide. Enzyme Microb. Technol. 3: 197–206

    Article  CAS  Google Scholar 

  • Uffen, R.L. 1983. Metabolism of carbon monoxide by Rhodopseudomonas gelatinosa: Cell growth and properties of the oxidation system. J.Bacteriol. 155: 956–965

    CAS  Google Scholar 

  • Wakim, B.T. & R.L. Uffen. 1983. Membrane association of the carbon monoxide oxidation system in Rhodopseudomonas gelatinosa. J.Bacteriol. 153: 571–573

    CAS  Google Scholar 

  • Wood, H.G., H.L. Drake, & S.-I Hu. 1982. Studies with Clostridium thermoaceticum and the resolution of the pathway used by acetogenic bacteria that grow on carbon monoxide or carbon dioxide and hydrogen. Proc. Biochem. Symp. 29–56

    Google Scholar 

  • Woodland, M.P. & H. Dalton. 1984. Purification and characterization of component A of the methane monooxygenase from Methylococcus capsulatus (Bath). J.Biol.Chem. 259: 53–59

    CAS  Google Scholar 

  • Yagi, T. 1958. Enzymic oxidation of carbon monoxide. Biochem. Biophys. Acta 30: 194–195

    Article  CAS  Google Scholar 

  • Yagi, T. 1959. Enzymic oxidation of carbon monoxide II. J. Biochem. (Tokyo) 46: 949–955

    CAS  Google Scholar 

  • Yagi, T. & N. Tamiya. 1962. Enzymic oxidation of carbon monoxide III. Reversibility. Biochem. Biophys. Acta 56: 508–509

    Article  Google Scholar 

  • Zavarzin, G.A. & A.N. Nozhevnikova. 1977. Aerobic carboxydobacteria. Microbial Ecol. 3: 305–326

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 D. Reidel Publishing Company

About this paper

Cite this paper

Meyer, O., Fiebig, K. (1985). Enzymes Oxidizing Carbon Monoxide. In: Degn, H., Cox, R.P., Toftlund, H. (eds) Gas Enzymology. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-5279-9_11

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-5279-9_11

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-8831-2

  • Online ISBN: 978-94-009-5279-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics