Skip to main content
Log in

The cytochrome composition of carboxydotrophic bacteria

  • Original Papers
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Spectroscopy at room and liquid nitrogen temperatures with extracts of the carbon monoxide-oxidizing bacteria Pseudomonas carboxydovorans, P. carboxydohydrogena, P. carboxydoflava, P. compransoris, Alcaligenes carboxydus, and Arthrobacter 11/x revealed the presence of normal electron transport systems, containing b-, c-, and a-type cytochromes at concentrations that compare to those of other aerobic bacteria. CO did not induce the formation of special CO-insensitive terminal oxidases. The gross composition of the respiratory chains was not affected by the type of growth substrate, and cytochrome d(=a2) was not detected. However, certain b-type cytochromes were only found when CO or H2 + CO2 served as growth substrates. All strains contained at least two different b-type cytochromes. Cytochrome b563 formed a weak CO-complex and was identified as a novel cytochrome o. It functions as CO-insensitive, alternative terminal oxidase in carboxydotrophic bacteria. A soluble CO-binding cytochrome c was present in P. carboxydovorans, P. carboxydohydrogena, and P. carboxydoflava. A CO-binding protoheme compound could be identified as catalase in P. compransoris, P. carboxydovorans, P. carboxydohydrogena, A. carboxydus, and Arthrobacter 11/x. The data are consistent with the presence of branched respiratory chains in the carboxydotrophs examined, and suggest the functioning of both, cytochrome a and the novel cytochrome o as terminal oxidases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arima K, Oka T (1965) Cyanide resistance in Achromobacter. I. Induced formation of cytochrome a2 and its role in cyanide-resistant respiration. J Bacteriol 90:734–743

    Google Scholar 

  • Bernard U, Probst I, Schlegel HG (1974) The cytochromes of some hydrogen bacteria. Arch Microbiol 95:29–37

    Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein, utilizing the principle of protein dye binding. Anal Biochem 72:248–254

    Google Scholar 

  • Broberg PL, Smith L (1967) The cytochrome system of Bacillus megaterium KM. The presence and some properties of two CO-binding cytochromes. Biochim Biophys Acta 131:479–489

    Google Scholar 

  • Chance B, Williams GR (1956) The respiratory chain and oxidative phosphorylation. Adv Enzymol 17:65–134

    Google Scholar 

  • Cypionka H (1982) Kohlenmonoxid-insensitive Atmung: Elektronentransport and terminale Oxidasen in carboxydotrophen Bakterien. Ph D thesis, Univ Göttingen, West Germany, pp 181

    Google Scholar 

  • Cypionka H, Meyer O (1982a) Influence of carbon monoxide on growth and respiration of carboxydobacteria and other aerobic organisms. FEMS Microbiol Lett 15:209–214

    Google Scholar 

  • Cypionka H, Meyer O (1982b) Why carboxydobacteria are insensitive to carbon monoxide. Zbl Bakt Hyg, I. Abt C 3:534

    Google Scholar 

  • Daniel RH (1970) The electron transport system of Acetobacter suboxydans with particular reference to cytochrome o. Biochim Biophys Acta 216:328–341

    Google Scholar 

  • Eberhardt U (1969) On chemolithotrophy and hydrogenase of a grampositive Knallgas bacterium. Arch Mikrobiol 66:91–104

    Google Scholar 

  • Estabrook RW (1961) Spectrophotometric studies of cytochromes cooled in liquid nitrogen. In: Falk JE, Lemberg R, Morton RK (eds) Haematin enzymes, vol 2. Pergamon Press, Oxford, pp 436–457

    Google Scholar 

  • Jurtshuk JrP, Yang T (1980) Oxygen reactive hemoprotein compounds in bacterial respiratory systems. In: Knowles CJ (ed) Diversity of bacterial respiratory systems, vol 1. CRC Press, Florida, pp 137–159

    Google Scholar 

  • Jurtshuk JrP, Mueller TJ, Acord WC (1975) Bacterial terminal oxidases. CRC Crit Rev Microbiol 3:399–468

    Google Scholar 

  • Kamen MD, Horio T (1970) Bacterial cytochromes. I. Structural aspects. Ann Rev Biochem 39:673–700

    Google Scholar 

  • Kim YM, Hegeman GD (1981) Electron transport system of an aerobic carbon monoxide-oxidizing bacterium. J Bacteriol 148:991–994

    Google Scholar 

  • Kim YM, Hegeman GD (1983) Oxidation of carbon monoxide by bacteria. Int Rev Cytol, in press

  • Klemme JH, Schlegel HG (1969) Untersuchungen zum Cytochromoxidase-System aus anaerob im Licht and aerob im Dunkeln gewachsenen Zellen von Rhodopseudomonas capsulata. Arch Mikrobiol 68:326–354

    Google Scholar 

  • La Rivière JWM (1958) On the microbial metabolism of the tartaric acid isomers. Ph D thesis, University of Delft, The Netherlands

    Google Scholar 

  • Lebedinskii AV, Ivanovskii RN, Nozhevnikova AN (1976) Composition and content of cytochromes in cells of carboxide bacteria. Microbiology (USSR) 45:160–161

    Google Scholar 

  • Meyer O, Schlegel HG (1978) Reisolation of the carbon monoxide utilizing hydrogen bacterium Pseudomonas carboxydovorans (Kistner) comb. nov. Arch Microbiol 118:35–43

    Google Scholar 

  • Meyer O, Schlegel HG (1983) Biology of aerobic carbon monoxide-oxidizing bacteria. Ann Rev Microbiol 37:277–310

    Google Scholar 

  • Meyer O, Lalucat J, Schlegel HG (1980) Pseudomonas carboxydohydrogena (Sanjieva and Zavarzin) comb. nov., a monotrichous, nonbudding, strictly aerobic, carbon monoxide-utilizing hydrogen bacterium, previously assigned to the genus Seliberia. Int J Syst Bacteriol 30:436–440

    Google Scholar 

  • Nies D, Schlegel HG (1982) Catalase from Comamonas compransoris. J Gen Appl Microbiol 28:311–319

    Google Scholar 

  • Nozhevnikova AN, Zavarzin GA (1974) On the taxonomy of CO-oxidizing gram negative bacteria. Izv Akad Nauk SSSR, Ser Biol 3:436–440

    Google Scholar 

  • Probst I, Schlegel HG (1976) Respiratory components and oxidase activities in Alcaligenes eutrophus. Biochim Biophys Acta 440:412–428

    Google Scholar 

  • Sanjieva EU, Zavarzin GA (1971) Oxidation of carbon monoxide by Seliberia carboxydohydrogena. Dokl Akad Nauk SSSR 196:956–958

    Google Scholar 

  • Söder G (1980) Vergleichende wachstumsphysiologische und taxonomische Untersuchungen an Stämmen Kohlenmonoxid oxidierender Bakterien. Diplom thesis, Univ Göttingen, West Germany, pp 83

    Google Scholar 

  • Van Gelder BF (1966) On cytochrome c oxidase. I. The extinction coefficients of cytochrome a and cytochrome a3. Biochim Biophys Acta 118:36–46

    Google Scholar 

  • Van Verseveld HW, Braster M, Boogerd FC, Chance B, Stouthamer AH (1983) Energetic aspects of growth of Paracoccus denitrificans: Oxygen limitation and shift from anaerobic nitrate-limitation to aerobic succinate-limitation. Evidence for a new alternative oxidase, cytochrome a1. Arch Microbiol, in press

  • Warburg O (1926) Über die Wirkung des Kohlenoxyds auf den Stoffwechsel der Hefe. Biochem Z 177:471–486

    Google Scholar 

  • Zannoni D, Baccarini-Melandri A, Melandri B, Evans EH, Prince RC, Crofts AR (1974) Energy transduction in photosynthetic bacteria. The nature of cytochrome c oxidase in the respiratory chain of Rhodopseudomonas capsulata. FEBS Lett 48:152–155

    Google Scholar 

  • Zavarzin GA, Nozhevnikova AN (1977) Aerobic carboxydobacteria. Microb Ecol 3:305–326

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cypionka, H., Meyer, O. The cytochrome composition of carboxydotrophic bacteria. Arch. Microbiol. 135, 293–298 (1983). https://doi.org/10.1007/BF00413484

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00413484

Key words

Navigation