Skip to main content

Distributed Damage Processes in Fracture

  • Chapter
Chemistry and Physics of Fracture

Part of the book series: NATO ASI Series ((NSSE,volume 130))

Abstract

Fracture events in materials occur in a wide variety of ways, ways which differ in both macroscopic and microscopic characteristics. One class of such characteristics has come to be called “distributed damage”. The concept of distributed damage processes as part of a total fracture event implies multiple sites of cracking, void formation, or other damage phenomena, instead of a single crack which causes fracture by self-extension. An important consequence of the multiple damage concept has to do with fracture kinetics. The rates of damage formation at these multiple sites need not replicate the rate of crack motion, so that the familiar models of the crack tip as stationary in a field of moving material must become much more complex to represent varying damage rate phenomena Finally, even the concept of fracture by crack motion can be less relevant, even irrelevant, in the presence of multiple damage. It is in principle possible for a specimen which is undergoing distributed damage processes to exhibit fracture, for example by stable growth and impingement of microvoids, without ever containing a distinct crack. Thus description of distributed damage fractures typically requires greater complexity (or sophistication), both in experimental viewpoint and also in modeling, compared to self-extending cracks. In addition, they often are markedly sensitive to microstructural parameters, and thus are of particular interest to the metallurgist and materials scientist.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Low J.R.: Progress in Materials Science, 1963, Vol. 12, 1–96.

    Article  Google Scholar 

  2. Rogers H.C.: in Fundamentals of Deformation Processing ( W.A Backofen, et al., eds.), 199–255. Syracuse: Syracuse Univ. Press, 1964.

    Google Scholar 

  3. Rosenfield A.R.: Metall. Rev., 1968, Vol. 13, 29–40.

    CAS  Google Scholar 

  4. Knott J.F.: Fundamentals of Fracture Mechanics, Ch. 8. London: Butterworths, 1973.

    Google Scholar 

  5. Broek D.: Internal Metals Reviews, 1974, Vol. 19, 135–180.

    Google Scholar 

  6. Van Stone R.H., T.B. Cox, J.R. Low and J.A. Psioda: Internal Metals Reviews, 1985, Vol. 30, 157–179.

    Google Scholar 

  7. Tipper C.F.: Metallurgia, 1948–49, Vol. 39, 133–137.

    Google Scholar 

  8. Puttick K.E.: Phil. Mag., 1959, Vol. 4, 964–969.

    Article  CAS  Google Scholar 

  9. Goods S.H., and L.M. Brown: Acta Met, 1979, Vol. 27, 1–15.

    Article  CAS  Google Scholar 

  10. Argon A.S., J. Im, and A. Needleman: Metall. Trans. A, 1975, Vol. 6A, 815–824.

    Article  Google Scholar 

  11. Argon A.S., J. Im and R. Safoglu: Metall. Trans. A, 1975, Vol. 6A, 825–837.

    Article  Google Scholar 

  12. Argon AS., and J. Im: Metall. Trans. A, 1975, Vol. 6A, 839–851.

    Article  Google Scholar 

  13. Garber, R., IM Bernstein and AW. Thompson: Scripta Met, 1976, Vol. 10, 341–45.

    Article  CAS  Google Scholar 

  14. Cialone K, and R.J. Asaro: Metall. Trans. A, 1979, Vol. 10A, 367–375.

    Google Scholar 

  15. Garber R., IM Bernstein and A.W. Thompson: Metall. Trans. A, 1981, Vol. 12A, 225–234.

    Article  CAS  Google Scholar 

  16. Cox T.B.: Ph.D. Thesis, Carnegie Mellon University, Pittsburgh, 1973.

    Google Scholar 

  17. Thompson A.W.: Acta Met, 1983, Vol. 31, 1517–1523.

    Article  Google Scholar 

  18. Argon A.S.: J. Eng. Mater. Tech. (Trans. ASME, Series H), 1976, Vol. 98, 60–68.

    Google Scholar 

  19. Bridgman P.W.: Studies in Large Plastic Flow and Fracture. New York: McGraw- Hill, 1952.

    Google Scholar 

  20. Hippsley C.A. and S.G. Druce: Acta Met, 1983, Vol. 31, 1861–1872.

    Article  CAS  Google Scholar 

  21. Fischmeister H.F., E. Navara and K.E. Easterling: Metal Sci. J., 1972, Vol. 6, 211–215.

    Article  CAS  Google Scholar 

  22. Gladman T., B. Holmes and I.D. Mclvor: in Effect of Second-phase Particles on the Mechanical Properties of Steel, 68–78. London: Iron and Steel Inst, 1971.

    Google Scholar 

  23. Joy G.D., and J. Nutting: ibid, 95–100.

    Google Scholar 

  24. McClintock F.A.: J. Appl. Mech. (Trans. ASME, Series E), 1968, Vol. 35, 363–371.

    Google Scholar 

  25. McClintock F.A.: in Ductility, 255–277. Metals Park: ASM, 1968.

    Google Scholar 

  26. Rice J.R., and D.M. Tracey: J. Mech. Phys. Solids, 1969, Vol. 17, 201–217.

    Article  Google Scholar 

  27. Tracey D.M.: Eng. Fract Mech., 1971, Vol. 3, 301–315.

    Article  Google Scholar 

  28. Rice J.R., and M.A. Johnson: in Inelastic Behavior of Solids ( M.F. Kanninen, W.F. Adler, A.R. Rosenfield and R.I. Jaffee, eds.), 641–672. New York: McGraw-Hill, 1970.

    Google Scholar 

  29. Gurland J.: in Composite Materials, Vol. 5: Fracture and Fatigue ( L.J. Broutman, ed.), 45–91. New York: Academic Press, 1974.

    Google Scholar 

  30. Edelson B.I., and Baldwin, W.M.: Trans. ASM, 1962, Vol. 55, 230–250.

    CAS  Google Scholar 

  31. LeRoy G., J.D. Embury, G. Edward and M.F. Ashby: Acta Met, 1981, Vol. 29, 1509–1522.

    Article  CAS  Google Scholar 

  32. LeRoy G., J.D. Embury, G. Edward and M.F. Ashby: Acta Met, 1981, Vol. 29, 1509–1522.

    Article  CAS  Google Scholar 

  33. Rogers H.C.: Trans. TMS-AIME, 1960, Vol. 218, 498–506.

    Google Scholar 

  34. Gurson A.L.: J. Eng. Mater. Tech. (Trans. ASME, Series H), 1977, Vol. 99, 2–15.

    Google Scholar 

  35. Berg C.A.: in Inelastic Behavior of Solids ( M.F. Kanninen, W.F. Adler, A.R. Rosenfield and R.I. Jaffee, eds.), 171–209. New York: McGraw-Hill, 1970.

    Google Scholar 

  36. Tvergaard V., and A. Needleman: Acta Met, 1984, Vol. 32, 157–169.

    Article  Google Scholar 

  37. Avaras G., and R.M. McMeeking: to be published (see McMeeking paper, this volume).

    Google Scholar 

  38. Backofen W.A.: in Fracture of Engineering Materials, 107–126. Metals Park: ASM, 1964.

    Google Scholar 

  39. Cox T.B., and J.R Low: Metall. Trans., 1974, Vol. 5, 1457–1470.

    Article  CAS  Google Scholar 

  40. Brown L.M., and J.D. Embury: in Proc. Third Int Conf. on Strength of Materials and Alloys (ICSMA 3), 164–169. Cambridge: Inst Metals, 1973.

    Google Scholar 

  41. Roberts W., B. Lehtinen and K. E. Easterling: Acta Met, 1976, Vol. 24, 745–758.

    Article  CAS  Google Scholar 

  42. Bluhm J.I., and R.J. Morrissey: in Proc. First Int Conf. on Fracture, Vol. 3, 1739–1780. Sendai: Japan Society for Strength and Fracture, 1966.

    Google Scholar 

  43. Park I.-G.: PhD. Thesis, Carnegie Mellon University, Pittsburgh, 1985.

    Google Scholar 

  44. Thompson A.W., and P.F. Weihrauch: Scripta Met, 1976, Vol. 10, 205–210.

    Article  CAS  Google Scholar 

  45. Thompson A.W., and J.C. Williams: in Fracture 1977 (Proc. 4th Int. Conf. on Fracture), Vol. 2, 343–348. Waterloo: Univ. Waterloo Press, 1977.

    Google Scholar 

  46. Thompson A.W., and B.A. Wilcox: Scripta Met, 1972, Vol. 6, 689–696.

    Article  CAS  Google Scholar 

  47. Krafft J.M.: Appl. Mater. Research, 1964, Vol. 4, 88–101.

    Google Scholar 

  48. Hahn G., and A. Rosenfield: in Applications-related Phenomena in Titanium Alloys (ASTM STP 432), 5–18. Philadelphia, Amer. Soc. Testing and Mater., 1968.

    Google Scholar 

  49. Brown W.F., and J.E. Srawley: in Review of Developments in Plane Strain Fracture Toughness Testing, W.F. Brown, ed. (ASTM STP 463), 216–248. Philadelphia: Amer Soc. Testing and Mater., 1970.

    Google Scholar 

  50. Gerberich W.W.: in Fracture: Interactions of Microstructure, Mechanisms, and Mechanics ( J.M. Wells and J.D. Landes, eds.), 49–74. Warrendale: TMS-AIME, 1984.

    Google Scholar 

  51. Ritchie R.O., J.F. Knott and J.R. Rice: J. Mech. Phys. Solids, 1973, Vol. 21, 395–410.

    Article  CAS  Google Scholar 

  52. Ritchie R.O., and A.W. Thompson: Metall. Trans. A, 1985, Vol. 16A, 233–248.

    Google Scholar 

  53. MacKenzie A.C., J.W. Hancock and D.K. Brown: Eng. Fract Mech., 1977, Vol. 9, 167–188.

    Article  CAS  Google Scholar 

  54. Ritchie R.O., W.L. Server and R.A. Wullaert: Metall. Trans. A, 1979, Vol. 10A, 1557–1570.

    Article  Google Scholar 

  55. Thompson A.W.: Mater. Sci. and Tech., 1985, Vol. 1, 711 – 718.

    CAS  Google Scholar 

  56. Thompson A.W., and M.F. Ashby: Scripta Met, 1984, Vol. 18, 127–130.

    Article  Google Scholar 

  57. Thompson A.W.: in Advances in Fracture Research (Proc. ICF 6), S.R. Valluri, D.M.R. Taplin, P.R. Rao, J.F. Knott and R. Dubey, eds., Vol. 2, 1393–1399. Oxford: Pergamon Press, 1984.

    Google Scholar 

  58. Garrison W.M.: Scripta Met, 1984, Vol. 18, 583–586.

    Article  CAS  Google Scholar 

  59. Garrison W.M.: in Mechanical Properties and Phase Transformations in Engineering Materials (E.R. Parker Symposium), S.D. Antolovich, R.O. Ritchie and W.W. Gerberich, eds., 187–205. Warrendale: TMS-AIME, 1986.

    Google Scholar 

  60. McMeeking R.M.: J. Mech. Phys. Solids, 1977, Vol. 25, 357–81.

    Article  CAS  Google Scholar 

  61. McMeeking R.M.: J. Eng. Mater. Tech. (Trans. ASME, Series H), 1977, Vol. 99, 290–97.

    Google Scholar 

  62. Ritchie R.O., and R.M. Cannon: Acta Met, submitted (also Report LBL-20656, Lawrence Berkeley Laboratory, University of California, Berkeley, Dec. 1985 ).

    Google Scholar 

  63. Ritchie R.O., and W. Yu: in Small Fatigue Cracks ( R.O. Ritchie and J. Lankford, eds., 167–189. Warrendale: TMS-AIME, 1986.

    Google Scholar 

  64. Krstic V.D., and A.K. Khaund: in Advances in Fracture Research, Vol. 4 ( D. Francois, ed.), 1577–1585. New York: Pergamon Press, 1982.

    Google Scholar 

  65. Krstic V.D., Phil. Mag., 1983, Vol. 48, 695–708.

    Article  CAS  Google Scholar 

  66. Fisher J.R., and J. Gurland: Metal Sci. J., 1981, Vol. 15, 185–192.

    Article  CAS  Google Scholar 

  67. Fisher J.R., and J. Gurland: Metal Sci. J., 1981, Vol. 15, 193 – 202.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Martinus Nijhoff Publishers, Dordrecht

About this chapter

Cite this chapter

Thompson, A.W. (1987). Distributed Damage Processes in Fracture. In: Latanision, R.M., Jones, R.H. (eds) Chemistry and Physics of Fracture. NATO ASI Series, vol 130. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-3665-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-3665-2_8

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-8140-5

  • Online ISBN: 978-94-009-3665-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics