Skip to main content

Abstract

One of the most dramatic and rapid hormone responses in plants is the induction by auxins of rapid cell elongation in isolated stem and coleoptile sections. The response begins within 10 minutes, results in a 5–10 fold increase in the growth rate, and persists for hours or even days (36). It is hardly surprising that this may be the most studied hormonal response in plants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Baker, D.B., Ray, P.M. (1965) Direct and indirect effects of auxin on cell wall synthesis in oat coleoptile tissue. Plant Physiol. 40, 345–352.

    Article  CAS  PubMed  Google Scholar 

  2. Bates, G.W., Cleland, R.E. (1979) Protein synthesis and auxin-induced growth; inhibitor studies. Planta 145, 437–442.

    Article  CAS  Google Scholar 

  3. Bates, G.W., Goldsmith, M.H.M. (1983) Rapid response of the plasma- membrane potential in oat coleoptiles to auxin and other weak acids. Planta 159, 231–237.

    Article  CAS  Google Scholar 

  4. Brummer, B., Felle, H., Parish, R.W. (1984) Evidence that acid solutions induce plant cell elongation by acidifying the cytosol and stimulating the proton pump. FEBS Lett. 174, 223–227.

    Article  CAS  Google Scholar 

  5. Cleland, R.E. (1971) Cell wall extension. Annu. Rev. Plant Physiol. 22, 197–222.

    Article  CAS  Google Scholar 

  6. Cleland, R.E. (1971) Instability of the growth-limiting proteins of the Avena coleoptile and their pool size in relation to auxin. Planta 99, 1–11.

    Article  CAS  Google Scholar 

  7. Cleland, R.E. (1972) The dosage response curve for auxin-induced cell elongation: a réévaluation. Planta 104, 1–9.

    Article  CAS  Google Scholar 

  8. Cleland, R.E. (1975) Auxin-induced hydrogen ion excretion: correlation with growth, and control by external pH and water stress. Planta 127, 233–42.

    Article  CAS  Google Scholar 

  9. Cleland, R.E. (1976) Fusicoccin-induced growth and hydrogen ion excretion of Avena coleoptiles: relation to auxin responses. Planta 128, 201–206.

    Article  CAS  Google Scholar 

  10. Cleland, R.E. (1977) The control of cell enlargement. In Integration of activity in the higher plant, pp. 101–115, Jenning, D.H., ed. Cambridge Press, Cambridge.

    Google Scholar 

  11. Cleland, R.E. (1981) Wall extensibility: hormones and wall extension. In: Plant Carbohydrates, Vol. II., Extracellular carbohydrates. Encyl. Plant Physiol., N.S. 13B, pp. 255–273, Tanner, W., Loewus, F.A. ed. Springer, Heidelberg.

    Google Scholar 

  12. Cleland, R.E. (1983) The capacity for acid-induced wall loosening as a factor in the control of Avena coleoptile cell elongation. J. Exp. Bot. 34, 676–680.

    Article  CAS  Google Scholar 

  13. Cleland, R.E. Unpublished data.

    Google Scholar 

  14. Cleland, R.E., Rayle, D.L. (1977) Réévaluation of the effect of calcium ions on auxin- induced elongation. Plant Physiol. 60, 709–712.

    Article  CAS  PubMed  Google Scholar 

  15. Cosgrove, D.J. (1985) Cell wall yield properties of growing tissues: evaluation by in vivo stress relaxation. Plant Physiol. 78, 347–356.

    Article  CAS  PubMed  Google Scholar 

  16. Cosgrove, D.J., Cleland, R.E. (1983) Osmotic properties of pea internodes in relation to growth and auxin action. Plant Physiol. 72, 332–338.

    Article  CAS  PubMed  Google Scholar 

  17. Cross, J.W., Briggs, W.R., Dohrmann, U.C., Ray, P.M. (1978) Auxin receptors of maize coleoptile membranes do not have ATPase activity. Plant Physiol. 61, 581–584.

    Article  CAS  PubMed  Google Scholar 

  18. Durand, H., Rayle, D.L. (1973) Physiological evidence for auxin- induced hydrogen-ion secretion and the epidermal paradox. Planta 114, 185–193.

    Article  CAS  Google Scholar 

  19. Evans, M.L. (1985) The action of auxin on plant cell elongation. Critical Rev. Plant Sei. 2, 317–365.

    Article  CAS  Google Scholar 

  20. Evans, M.L., Ray, P.M. (1969) Timing of the auxin response in coleoptiles and its implications regarding auxin action. J. Gen. Physiol. 53, 1–20.

    Article  CAS  PubMed  Google Scholar 

  21. Fry, S.C. (1986) Cross-linking of matrix polymers in the growing cell walls of Angiosperms. Annu. Rev. Plant Physiol. 37, in press.

    Google Scholar 

  22. Gabathuler, R., Cleland, R.E. (1985) Auxin regulation of a proton translocating ATPase in pea root plasma membrane vesicles. Plant Physiol. 79, 1080–1085.

    Article  CAS  PubMed  Google Scholar 

  23. Galston, A.W., Baker, R.S. (1951) Studies on the physiology of light action. IV. Light enhancement of auxin-induced growth in green peas. Plant Physiol. 26, 311–317.

    Article  CAS  PubMed  Google Scholar 

  24. Goldberg, R., Prat, R. (1981) Development of the response to growth regulators during the maturation of mungbean hypocotyls. Physiol. Veg. 19, 523–532.

    CAS  Google Scholar 

  25. Hagen, G., Kleinschmidt, A., Guilfoyle, T. (1984) Auxin-regulated gene expression in intact soybean hypocotyl and excised hypocotyl sections. Planta 162, 147–153.

    Article  CAS  Google Scholar 

  26. Hager, A., Menzel, H., Krauss, A. (1971) Versuche und Hypothese zur Primarwirkung des Auxins beim Streckungswachstum. Planta 100, 47–75.

    Article  CAS  Google Scholar 

  27. Hertel, R. (1983) The mechanism of auxin transport as a model for auxin action. Z. Pflanzenphysiol. 112, 53–67.

    CAS  Google Scholar 

  28. Higgins, T.J.V., Jacobsen, J.V. (1978) The influence of plant hormones on selected aspects of cellular metabolism. In: Phytohormones and related compounds, Vol. I, pp. 467–514, Letham, D.W., Goodwin, P.B., Higgins, T.J.V., eds. Elsevier, Amsterdam.

    Google Scholar 

  29. Kutschera, U., Schopfer, P. (1985) Evidence against the acid growth theory of auxin action. Planta 103, 483–493.

    Article  Google Scholar 

  30. Labovitch, J.M., Ray, P.M. (1974) Relationship between promotion of xyloglucan metabolism and induction of elongation by IAA. Plant Physiol. 54, 499–502.

    Article  Google Scholar 

  31. Lockhart, J.A. (1965) An analysis of irreversible plant cell elongation. J. Theor. Biol. 8, 264–275.

    Article  CAS  PubMed  Google Scholar 

  32. Nakajima, N., Morikawa, H., Igasashi, S., Senda, M. (1981) Differential effect of calcium and magnesium on mechanical properties of pea stem cell walls. Plant Cell Physiol. 22, 1305–1315.

    CAS  Google Scholar 

  33. Nishitani, K., Masuda, Y. (1983) Auxin-induced changes in cell wall xyloglucans. Plant Cell Physiol. 24, 345–355.

    CAS  Google Scholar 

  34. Patrick, J.W. (1982) Hormone control of assimilate transport. In: Plant growth substances 1982, pp. 669-678, Wareing, P.F., ed. Academic Press, New York.

    Google Scholar 

  35. Pearce, D., Penny, D. (1983) Tissue interactions in IAA-induced rapid elongation of lupin hypocotyls. Plant Sei. Lett. 30, 347–353.

    CAS  Google Scholar 

  36. Penny, P., Penny, D. (1978) Rapid responses to phytohormones. In: Phytohormones and related compounds, Vol. II, pp. 537–97, Letham, D.S., Goodwin, P.B., Higgins, T.J.V., eds. Elsevier, Amsterdam.

    Google Scholar 

  37. Ray, P.M. (1977) Auxin-binding sites of maize coleoptiles are localized on membranes of the endoplasmic reticulum. Plant Physiol. 59, 594–599

    Article  CAS  PubMed  Google Scholar 

  38. Rayle, D.L., Cleland, R.E. (1970) Enhancement of wall loosening and elongation by acid solutions. Plant Physiol. 46, 250–253.

    Article  CAS  PubMed  Google Scholar 

  39. Rayle, D.L., Cleland, R.E. (1972) The in-vitro acid-growth response: relation to in-vivo growth responses and auxin action. Planta 104, 282–296.

    Article  CAS  Google Scholar 

  40. Rayle, D.L., Cleland, R.E. (1980) Evidence that auxin-induced growth of soybean hypocotyls involves proton excretion. Plant Physiol. 66, 433–37.

    Article  CAS  PubMed  Google Scholar 

  41. Rubery, P.H. (1981) Auxin receptors. Annu. Rev. Plant Physiol. 32, 569–596.

    Article  CAS  Google Scholar 

  42. Ruesink, A.W. (1969) Polysaccharidases and the control of cell wall elongation. Planta 89, 95–107.

    Article  CAS  Google Scholar 

  43. Sanders, D., Hansen, U-P., Slayman, C.L. (1981) Role of the plasma membrane proton pump in pH regulation in non-animal cells. Proc. Natl. Acad. Sci. USA 78, 5903–5907.

    Article  CAS  PubMed  Google Scholar 

  44. Spanswick, R.M. (1981) Electrogenic ion pumps. Annu. Rev. Plant Physiol. 32, 267–289.

    Article  CAS  Google Scholar 

  45. Stevenson, T.T., Cleland, R.E. (1981) Osmoregulation in the Auena coleoptile in relation to growth. Plant Physiol. 67, 749–753.

    Article  CAS  PubMed  Google Scholar 

  46. Taiz, L. (1984) Plant cell expansion: regulation of cell wall mechanical properties. Annu. Rev. Plant Physiol. 35, 585–657.

    Article  CAS  Google Scholar 

  47. Talbolt, L.D., Robert, J.K.M., Ray, P.M. (1984) Effect of IAA- and fusicoccin-stimulated proton extrusion on internal pH of pea cells. Plant Physiol. 75, S41.

    Google Scholar 

  48. Tepfer, M., Cleland, R.E. (1979) A comparison of acid-induced cell wall loosening in Valonia ventricosa and in oat coleoptiles. Plant Physiol. 63, 898–902.

    Article  CAS  PubMed  Google Scholar 

  49. Theologis, A., Ray, P.M. (1982) Changes in messenger RNAs under the influence of auxin. In: Plant growth substances 1982, pp. 43–57, Wareing, P.F., ed. Academic Press, New York.

    Google Scholar 

  50. Vanderhoef, L.N., Dute, R.R. (1981) Auxin-regulated wall loosening and sustained growth in elongation. Plant Physiol. 67, 146–149.

    Article  CAS  PubMed  Google Scholar 

  51. Vanderhoef, L.N., Stahl, C.A. (1975) Separation of two responses to auxin by means of cytokinin inhibition. Proc. Natl. Acad. Sci. USA 72, 1822–1825.

    Article  CAS  PubMed  Google Scholar 

  52. Vesper, M.J., Evans, M.L. (1978) Time-dependent changes in the auxin sensitivity of coleoptile segments. Apparent sensory adaptation. Plant Physiol. 61, 204–208.

    Article  CAS  PubMed  Google Scholar 

  53. Walton, J.D., Ray, P.M. (1981) Evidence for receptor function of auxin binding sites in maize. Red light inhibition of mesocotyl elongation and auxin binding. Plant Physiol. 68, 1334–1338.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Martinus Nijhoff Publishers, Dordrecht

About this chapter

Cite this chapter

Cleland, R.E. (1987). Auxin and Cell Elongation. In: Davies, P.J. (eds) Plant Hormones and their Role in Plant Growth and Development. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-3585-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-3585-3_8

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-247-3498-6

  • Online ISBN: 978-94-009-3585-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics