Skip to main content

Abstract

Genetics has been wed extensively as a tool to understand the developmental and biochemical pathways of pertain bacteria and fungi. However, this is generally not the case in higher plants where, due to increased complexity, even the genetic central of developmental processes such as internode elongation, flowering and fruiting has only been determined in a limited number of species. Indeed, it is only relatively recently that biochemical technique a have become available to determine the action of these genetic systems m cases where the genes regulate growth via changes in the amounts of, or sensitivity to, various plant hormones. In the present article a limited number of developmetal systems are discussed in order to illustrate how an understanding of the genetic control of a process can lead to a more complete picture of the way plant hormones control development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Ashton, N.W., Cove, D.J., Featherstone, D.R. (1979) The isolation and physiological analysis of mutants of the moss, Physcomitrella patens, which over-produce gametophores. Plantain, 437–442.

    Google Scholar 

  2. Ashton, N.W., Grimsley, N.H., Cove, D.J. (1979) Analysis of gametophytic development in the moss, Physcomitrella patens, using auxin and cytokinin resistant mutants. Planta 144, 427–435.

    Article  CAS  Google Scholar 

  3. Barendse, G.W.M., Lang, A. (1972) Comparison of endogenous gibberellins and the fate of applied radioactive gibberellin Ax in a normal and a dwarf strain of Japanese morning glory. Plant Physiol. 49, 836–841.

    Article  CAS  PubMed  Google Scholar 

  4. Beadle, G.W., Tatum, E.L. (1941) Genetic control of biochemical reactions in Neurospora. Proc. Nat. Acad. Sei. U.S.A. 27, 499–506.

    Article  CAS  Google Scholar 

  5. Bernier, G., Kinet, J.M., Sachs, R.M. (1981) The physiology of flowering, vol. 1. p. 149. CRC Press, Boca Raton, Florida.

    Google Scholar 

  6. Bopp, M. (1959) Versuche zur Analyse von Wachstum and Differenzierung des Laubmoosprotonemas. Planta 53, 178–197.

    Google Scholar 

  7. Bopp, M. (1963) Development of the protonema and bud formation in mosses. J. Linn. Soc. ( Bot. ) 58, 305–309.

    Google Scholar 

  8. Bopp, M. (1983) Developmental physiology of bryophytes. In: New manual of bryology, vol. 1, pp. 276–324, Schuster, R.M., ed. The Hattori Botanical Lab., Miyazaki, Japan.

    Google Scholar 

  9. Brian, P.W. (1957) The effects of some microbial metabolic products on plant growth. Symp. Soc. Exp. Biol. 11, 166–181.

    Google Scholar 

  10. Cove, D.J., Ashton, N.W., Featherstone, D.R., Wang, T.L. (1980) The use of mutant strains in the study of hormone action and metabolism in the moss Physcomitrella patens. In The proceedings of the fourth John Innes Symposium, 1979, pp. 231–241, Davies, D.R., Hopwood, D.A., eds. The John Innes Charity, Norwich.

    Google Scholar 

  11. Davies, P.J., Emshwiller, E., Gianfagna, T.J., Proebsting, W.M., Noma, M., Pharis, R.P. (1982) The endogenous gibberellins of vegetative and reproductive tissue of G2 peas. Planta 154, 266–272.

    Article  CAS  Google Scholar 

  12. de Haan, H. (1927) Length factors in Pisum. Genetica 9, 481–497.

    Article  Google Scholar 

  13. Donkin, M.E., Wang, T.L., Martin, E.S. (1983) An investigation into the stomatal behaviour of a wilty mutant in Pisum sativum. J. Exp. Bot. 34, 825–834.

    Google Scholar 

  14. Eckland, P.R., Moore, T.C. (1968) Quantitative changes in gibberellin and RNA correlated with senescence of the shoot apex in the ‘Alaska’ pea. Amer. J. Bot. 55, 494– 503.

    Google Scholar 

  15. Foster, C.A. (1977) Slender: an accelerated extension growth mutant of barley. Barley Genet. Newslett. 7, 24–27.

    Google Scholar 

  16. Goto, N., Esashi, Y. (1973) Diffusible and extractable gibberellins in bean cotyledons in relation to dwarfism. Physiol. Plant. 28, 480–489.

    Google Scholar 

  17. Hatanaka-Ernst, M. (1966) Entwicklungsphysiolgische Untersuchungen an strahleninduzierten Protonemamutanten von Funaria hygrometrica Sibth. Z. Pflanzenphysiol. 55, 259–277.

    Google Scholar 

  18. Hedden, P., Phinney, B.O. (1979) Comparison of ent-kaurene and ent-isokaurene synthesis in cell-free systems for etiolated shoots of normal and dwarf-5 maize seedlings. Phytochem. 18, 1475–1479.

    Article  CAS  Google Scholar 

  19. Hedden, P., Phinney, B.O., Heupel, R., Fujii, D., Cohen, H., Gaskin, P., MacMillan, J., Graebe, J.E. (1982) Hormones of young tassels of Zea mays. Phytochem. 21, 391–393.

    CAS  Google Scholar 

  20. Hedden, P., Phinney, B.O., MacMillan, J., Sponsel, V.M. (1977) Metabolism of kaurenoids by Gibberella fujikuroi in the presence of the plant growth retardant, N, N, N-trimethyl-l-methyl-(2’,6’,6’,-trimethylcyclohex-2’-en-l’-yl) prop-2-enylammonium iodide Phytochem. 16, 1913–1917.

    CAS  Google Scholar 

  21. Ingram, T.J., Reid, J.B., Murfet, I.C., Gaskin, P., Willis, C.L., MacMillan, J. (1984) Internode length in Pisum. The Le gene controls the 3ß-hydroxylation of gibberellin A20 to gibberellin Ax. Planta 160, 455–463.

    Article  CAS  Google Scholar 

  22. Ingram, T.J., Reid, J.B., Potts, W.C., Murfet, I.C. (1983) Internode length in Pisum. IV. The effect of the Le gene on gibberellin metabolism. Physiol. Plant. 59, 607–616.

    Google Scholar 

  23. Johri, M.M., Desai, S. (1973) Auxin regulation of caulonema formation in moss protonema. Nature new Biol. 245, 223–224.

    CAS  PubMed  Google Scholar 

  24. Jones, R.L., Lang, A. (1968) Extractable and diffusible gibberellins from light and dark-grown pea seedlings. Plant Physiol. 43, 629–634.

    Article  CAS  PubMed  Google Scholar 

  25. Kamiya, Y.,Graebe, J.E. (1983) The biosynthesis of all major pea gibberellins in a cell- free system from Pisum sativum. Phytochemistry 22, 681–689.

    Article  Google Scholar 

  26. Karssen, C.M., Brinkhorst-van der Swan, D.L.C., Breekland, A.E., Koornneef, M. (1983) Induction of dormancy during seed development by endogenous abscisic acid: studies on ghseisic acid deficient genotypes of Arabidopsie thaliana (L.). Heynh. Planta 157,158– 65.

    Google Scholar 

  27. King, W., Murfet, I.C, (1985) Flowering in Psiutn: a sixth locus, Dne, Ann. Bot. 56,853– 846.

    Google Scholar 

  28. Koornneef, M., Jorna, MX., Brinkhorst - van der Swan, D.L.C., Karssen, C.M. (1982) The isolation of abscisic acid (ABA) deficient mutants by selection of induced revertants in nongerminating gibberellin sensitive linesofArubidopsis thaliam (L.)Heynh. Tfeeor. Appl. Genet. 61, 385–393.

    Google Scholar 

  29. Koornneef, M., Rueling, G., Karssen, C.M. (1984) The isolation and characterisation of abscisic acid-insensitive mutants of A rabidopsis thaliana. Physiol. Plant. 61,377– 383.

    Google Scholar 

  30. Koornneef, M., van der Veen, J.H. (1980) Induction and analysis of gibberellin sensitive mutants in Arabidopsis thaliana (L.) Heynh. Theor. Appl. Genet. 58, 257–263.

    Article  Google Scholar 

  31. Lindqvist, K. (195U The mutant ‘micro’ in Pisum. Hereditas 37, 389–420.

    Google Scholar 

  32. Magara, J. (1963) Notes on the possible role of endogenous ‘gibberellins’ in the determining of monofactorial dwarfism in dwarf sweet peas (Lathyrue odoratus L.) and in mutants d1 and d5 of maize. Ann. Physiol. Veg, 5, 249–261.

    Google Scholar 

  33. Marx, G.A. (1968) Influence of genotype and environment on senescence in peas, Pisum sativum L. Bioscience 18, 605–506.

    Article  Google Scholar 

  34. Marx, G.A. (1976) “Wilty”: a new gene of Pisum. Pisum Newslet. 8, 40–41.

    Google Scholar 

  35. Milborrow, B.V. (1981) Abscisic acid and other bomones. In; The physiology and biochemistry of drought resistance in plants, pp. 348–88, Paleg, L.G., Aspinall, D., eds. Academic Press, Sydney.

    Google Scholar 

  36. Murakami, Y. (1972) Dwarfing genes in rice and their relation to gibberellin biosynthesis. In: Plant growth substance«, 1970, pp. 166–174, Carr. DJ., ed. Springer- Verlag, Berlin.

    Google Scholar 

  37. Murfet, I.C. (1971) Flowering in Pisum. Three distinct phenotypic classes determined by the interaction of a dominant early and a dominant late gene. Heredity 26, 243–257.

    Article  Google Scholar 

  38. Murfet, I.C. (1971) Flowering in Pisum: reciprocal grafts between known genotypes. Aust. J. Biol. Sci. 24, 1089–1101.

    Google Scholar 

  39. Murfet, LC. (1973) Flowering in Pisum. Hr, a gene for high response to photoperiod. Heredity 3 i, 157–164.

    Google Scholar 

  40. Murfet, I.C. (1977) Environmental interaction and the genetics of flowering. Ann. Rev. Plant Physiol. 28, 253–278.

    Article  Google Scholar 

  41. Murfet, I.C. (1985) Pisum sativum L. In: Handbook of flowering, vol. IV, pp. 97–1126, Halevy, A.H., ed. CRC Press, Boca Raton, Florida.

    Google Scholar 

  42. Murfet, I.C., Reid, J.B. (1974) Flowering in Pisum: the influence of photoporiod and vernalising temperatures on the expression of genes Lf and Sn. Z. Pflanzenphysiol. 71, 323–331.

    Google Scholar 

  43. Murfet, I.C,, Reid, J.B. (1985) The control of flowering and internode length in Pisum. in The pea crop: a basis for improvement, pp. 67–80, Hebblethwaite, P.D., Heath, M.C., Dawkins, T.C.K., eds. Butterworths, London.

    Google Scholar 

  44. Neill, S.J., Hogan, R. (1985) Abscisic acid production and water relations in wilty tomato mutants subjected to water deficiency. J. Exp. Bot. 36, 1222–1231.

    Article  CAS  Google Scholar 

  45. Neil, S. J., McGaw, B.A., Horgan, R. (1986) Ethylene and l-aminocyclopropane-l- carboxylic acid production in flacca, a wilty tomato mutant, subjected to water deficiency and pretreatment with abscisic acid. J. Exp. Bot. 37, 535–541.

    Google Scholar 

  46. Nevo, Y., Tal, M. (1973) The metabolism of abscisic acid in flacca, a wilty mutant of tomato. Biochem. Genet. 10, 79–90.

    Google Scholar 

  47. Phifiney.B.O. (1961) Dwarfing genes in Zea mays and their relation to the gibberellins. In: Plant growth regulation, pp. 489–501, Klein, R.M., ed. Iowa State College Press, Ames, Iowa.

    Google Scholar 

  48. PhiAney, B.O. (1984) Gibberellin At, dwarfism and the control of shoot elongation in higher plants. Im The biosynthesis and metabolism of plant hormones, Sec. Exp. Biol. Seminar Series 23, pp. 17–41, Crozier, A., Hillman, J.R., eds. Cambridge University Press, London.

    Google Scholar 

  49. Phinney, B.O., Spray, C. (1982) Chemical genetics and the gibberellia pathway in Zea mays L. In: Plant growth substances 1982, pp. 101–110, Wareing, P.P., ed. Academic Presa, Loadon.

    Google Scholar 

  50. Postlethwait, S.N., Nelson, Q.E. (19S7) A chronically wilted mutant of maize. Amer. J. Bot. 44, 628–633.

    Google Scholar 

  51. Potts, W.C., Reid, J.B. (1983) Inter node length in Pisum. III. The effect and interaction of the Na/na and Le/le gene differences on endogenous gibberellin-like substances. Physiol. Plant 57, 448–464.

    Google Scholar 

  52. Potta, W.C., Raid, J.B., Murfet, I.C. (1982) Internode length in Pisum. I. The effect of the Le/le gene difference on endogenous gibberrellin substances. Physiol. Plant. 55, 323–328.

    Google Scholar 

  53. Potta, W.C., Reid, J.B., Murfet, LC. (1985) Internode lengthinPimm. Gibberellins and the slender phenotype. Physiol. Plant. 63, 357–364.

    Google Scholar 

  54. Proebsting, W.M., Da vies, P. J., Marx, G.A. (1978) Photoperiod-induced changes in gibberellin metabolism in relation to apical growth and senescence in genetic lines of peas(Pisium sativum L.). Planta 141, 231–2238.

    Article  CAS  Google Scholar 

  55. Quarrie, S.A. (1982) Droopy: a wilty mutant of potato deficient in abscisic acid. Plant Cell Eavir. 5, 23–26.

    CAS  Google Scholar 

  56. Radley, M. (1970) Comparison of endogenous gibberelfes atodrespond ta applied gibberellin of some dwarf and tall wheat cultivars. Planta 292–300.

    Google Scholar 

  57. Reid, J.B. (1979) Flowering in Pisum: the effect of age on the Ann. Bot. 44, 163–173.

    Google Scholar 

  58. Reid, J.B. (1983) Internode length genes in Pisum. Do the internode length genes effect growth in dark-grown plants? Plant Physiol. 72, 759–763.

    Article  CAS  PubMed  Google Scholar 

  59. Reid, J.B. (1986) Internode length in Pisum. Three further loci, lh ls and lk. Ann. Bot. 57, 577–592.

    Google Scholar 

  60. Reid, J.B. (1986) Gibberellin mutants. In: A genetic approach to plant biochemistry, Plant Gene Research, vol. 3, pp. 1–34, King, P. J., Blonstein, AJD., eds. Springer- Verlag, Wien, New York.

    Google Scholar 

  61. Reid, J.B., Murfet, I.C. (1977) Flowering in Pisum: the effect of genotype, plant age, photoperiod and number of inductive cycles. J. Exp. Bot. 28, 811–819.

    Google Scholar 

  62. Reid, J.B., Murfet, I.C. (1977) Flowering in Pisum: the effect of light quality on genotype Ife Sn Hr. J. Exp. Bot. 28, 1357–1364.

    Google Scholar 

  63. Reid, J.B., Murfet, I.C. (1984) Flowering in Pisum: a fifth locus, Veg. Ann Bot. 53, 369– 382.

    Google Scholar 

  64. Reid, J.B., Murfet, I.C., Potts, W.C. (1983) Internode length in Pisum. II. Additional information on the relationship and action of loci Le, La, Cry, Na and Lm. J. Exp. Bot. 34, 349–364.

    Google Scholar 

  65. Reid, J.B., Potts, W.C. (1986) Internode length in Pisum. Two further mutants, Ih and Is, with reduced gibberellin synthesis, and a gibberellin insensitive mutant, Ik. Physiol. Plant. 66, 417–426..

    Article  CAS  Google Scholar 

  66. Simmonds, N.W. (1965) Mutant expression in diploid potatoes. Heredity 20, 65–72.

    Article  Google Scholar 

  67. Simmonds, N.W. (1966) Linkage to the S-locus in diploid potatoes. Heredity 21, 473– 479.

    Google Scholar 

  68. Smith, J.D., McDaniel, S., Lively, S. (1978) Regulation of embryo growth by abscisic acid in vitro. Maize Genet. Co-op. Newslet. 52, 107–108.

    Google Scholar 

  69. Spray, C., Phinney, B.O., Gaskin, P., Gilmour, S.J., MacMillan, J. (1984) Internode length in Zea mays L. The dwarf-1 mutant controls the 3ß-hydroxylation of gibberellin A20 to gibberellin Av Planta 160, 464–468.

    CAS  Google Scholar 

  70. Stoddart, J.L. (1984) Growth and gibberellin-A1 metabolism in normal and gibberellin- insensitive (Rht3) wheat ( Triticum aestivum L.) seedlings. Planta 161, 432–438.

    Google Scholar 

  71. Taly M. (1966) Abnormal stomatal behaviour in wilty mutants of tomato. Plant Physiol. 1387–1391.

    Google Scholar 

  72. Tal, M., Eshel, A., Witztum, A. (1976) Abnormal stomatal behaviour and ion imbalance in Capsicum scabrous diminutive. J. Exp. Bot. 27, 953–960.

    Google Scholar 

  73. Tal, M., Imber, D. (1970) Abnormal stomatal behaviour and hormonal imbalance in flaccat a wilty mutant of tomato. II. Auxin-and abscisic acid-like activity. Plant Physiol. 46t 373–376.

    Google Scholar 

  74. Tal, M., Imber, D., Erez, A., Epstein, E. (1979) Abnormal stomatal behaviour and hormonal imbalance in flaccay a wilty mutant of tomato. V. Effect of abscisic acid on indoleacetic acid metabolism and ethylene evolution. Plant Physiol. 63, 1044–1048.

    Google Scholar 

  75. Tal, M., Imber, D., Itai, C. (1970) Abnormal stomatal behaviour and hormonal, imbalance in flacca, a wilty mutant of tomato. I. Root effect and kinetin-like activity. Plant Physiol. 46, 367–372.

    Google Scholar 

  76. Tal, M., Nevo, Y. (1973) Abnormal stomatal behaviour and root resistance, and hormonal imbalance in three wilty mutants of tomato. Biochem. Genet. 8, 291–300.

    Google Scholar 

  77. Taylor, I.B., Tarr, A.R. (1984) Phenotypic interactions between abscisic acid deficient tomato mutants. Theor. Appl. Genet. 68, 115–119.

    Google Scholar 

  78. Trewavas, A. (1981) How do plant growth substances work? Plant Cell Envir. 4, 203– 228.

    Google Scholar 

  79. Wang, T.L., Beutelmann, P., Cove, D.J. (1981) Cytokinin biosynthesis in mutants of the moss Physcomitrella patens. Plant Physiol. 68, 739–744.

    Article  CAS  PubMed  Google Scholar 

  80. Wang, T.L., Donkin, M.E., Martin, E.S. (1984) The physiology of a wilty pea: abscisic acid production under water stress. J. Exp. Bot. 351, 1222–1232.

    Google Scholar 

  81. Wang, T.L., Futers, T.S., McGeary, F., Cove, D.J. (1984) Moss mutants and the analysis of cytokinin metabolism. In The biosynthesis and metabolism of plant hormones, Soc. Exp. Biol. Seminar Series 23, pp. 135–164, Crozier, A., Hillman, J.R. eds. Cambridge University Press, London.

    Google Scholar 

  82. Wang, T.L., Horgan, R., Cove, D.J. (1981) Cytokinins from the moss Physcomitrella patens. Plant Physiol. 68, 735–738.

    Article  CAS  PubMed  Google Scholar 

  83. Zeevaart, J.A.D. (1984) Gibberellins in single gene dwarf mutants of tomato. Plant Physiol. Suppl. 75, 186.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Martinus Nijhoff Publishers, Dordrecht

About this chapter

Cite this chapter

Reid, J.B. (1987). The Genetic Control of Growth via Hormones. In: Davies, P.J. (eds) Plant Hormones and their Role in Plant Growth and Development. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-3585-3_17

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-3585-3_17

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-247-3498-6

  • Online ISBN: 978-94-009-3585-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics