Skip to main content

On the Xα Local Spin Density Approximation in the Study of Organic Molecules

  • Chapter
Chemistry and Physics of Energetic Materials

Part of the book series: NATO ASI Series ((ASIC,volume 309))

Abstract

While the familiar wave function methods meet with considerable success in numerous applications to chemistry, they involve formidable computational demands in any evaluation of thermochemical data at a level approaching chemical accuracy. By far the most useful non-empirical alternatives to configuration interaction calculations are the methods rooted in density functional theory (DFT). Building on their success in applications to inorganic chemistry, we examine here the applicability of DFT to the “simpler” organic systems, with the hope of retrieving good-quality thermochemical information (atomization energies, enthalpies, and the like). Namely, we examine here the local spin density (LSD) approximation and treat exchange and correlation in the Xα approach where α is a variable parameter. The tentative hypothesis is that the Xα(LSD) method basically meets the required demands of accuracy, i.e., that the energy should be right, if α is properly selected. This is where the problem lies: ever since the appearance of the Xα method, the way of selecting α has been a fundamental problem. On the basis of regularities which are observed for exchange-correlation energies, we develop a recipe permitting valid estimates of α. The at least approximate validity of this procedure is illustrated by the accuracy of calculated atomization energies, thus paving the way to accurate evaluations of dissociation energies. Examples include alkanes, alkyl radicals, amines and chloroalkanes, as well as weaker interactions (hydrogen bonds), showing that the theoretical results obtained in this approach are well within experimental accuracy. Bond dissociation energies in compounds NXHy were also investigated, with a direct application to the explosive decomposition of HN3.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964).

    Article  Google Scholar 

  2. W. Kohn and L.J. Sham, Phys. Rev. 140, A1133 (1965).

    Article  Google Scholar 

  3. D.R. Salahub, Adv. Chem. Phys. 69, 447 (1987)

    Article  CAS  Google Scholar 

  4. J.P. Dahl and J. Avery (Editors). Local density approximations in quantum chemistry and solid state physics. Plenum, New York, 1984

    Google Scholar 

  5. S. Lundqvist and N.H. March (Editors). Theory of the inhomogeneous electron gas. Plenum, New York, 1983.

    Google Scholar 

  6. U. von Barth and L. Hedin, J. Phys. C: Solid State Phys. 5, 1629 (1972).

    Article  Google Scholar 

  7. R. Gáspár, Acta Phys. Acad. Sci. Hung. 3, 263 (1954).

    Article  Google Scholar 

  8. H. Sambe and R.H. Felton, J. Chem. Phys. 62, 1122 (1975).

    Article  CAS  Google Scholar 

  9. B.I. Dunlap, J.W.D. Connolly, and J.R. Sabin, J. Chem. Phys. 71, 3386 (1979)

    Google Scholar 

  10. 71, 4993 (1979).

    Article  CAS  Google Scholar 

  11. S. Fliszár, S. Rioux, J. Andzelm, C. Minichino, and E.C. Vauthier, Can. J. Chem. 66, 3166 (1988).

    Article  Google Scholar 

  12. E.C. Vauthier, S. Fliszár, G. Dupré, and C. Paillard, Actes du Congrès commun des sections britannique et française du Combustion Institute: Groupement français de combustion, Rouen, 18–21 avril 1989.

    Google Scholar 

  13. E.C. Vauthier and S. Fliszár, to be published.

    Google Scholar 

  14. V. Barone, S. Fliszár, C. Minichino, and E.C. Vauthier, manuscript in preparation.

    Google Scholar 

  15. F. Herman and S. Skillman, Atomic structure calculations, Prentice-Hall, Englewood Cliffs, NJ, 1963.

    Google Scholar 

  16. A.H. Stroud, Approximate calculation of multiple integrals, Prentice-Hall, Englewood Cliffs, NJ, 1971.

    Google Scholar 

  17. J.C. Slater, Phys. Rev. 81, 385 (1951)

    Article  CAS  Google Scholar 

  18. J.C Slater, Adv. Quantum Chem. 6, 1 (1972)

    Article  CAS  Google Scholar 

  19. J.C. Slater, The self-consistent field for molecules and solids, Vol. 4. McGraw-Hill, New York, 1974.

    Google Scholar 

  20. R. Gáspár and Á. Nagy, Theor. Chim. Acta 72, 393 (1987).

    Article  Google Scholar 

  21. Á. Nagy, Int. J. Quantum Chem. 31, 269 (1987)

    Article  CAS  Google Scholar 

  22. R. Gáspár, Acta Phys. 35, 213 (1974).

    Article  Google Scholar 

  23. E.J. Baerends and P. Ros, Chem. Phys. 2, 52 (1973).

    Article  CAS  Google Scholar 

  24. K. Schwarz, Phys. Rev. B5, 2466 (1972).

    Google Scholar 

  25. H. Stoll, E. Golka, and H. Preuss, Theoret. Chim. Acta 55, 29 (1980).

    Article  CAS  Google Scholar 

  26. S. Huzinaga, J. Chem. Phys. 42, 1293 (1965).

    Article  Google Scholar 

  27. S. Huzinaga, Technical Report, University of Alberta, Edmonton, Alberta (1971).

    Google Scholar 

  28. T.H. Dunning, J. Chem. Phys. 55, 716 (1970).

    Article  Google Scholar 

  29. S. Fliszár and C. Minichino, Can. J. Chem. 65, 2495 (1987).

    Article  Google Scholar 

  30. C.E. Moore, Nat. Stand. Ref. Data Ser. (US Nat. Bur. Stand.) NSRD-NBS 34, 1 (1970).

    Google Scholar 

  31. D.R. Stull and G.C. Sinke, Adv. Chem. Ser. 18 (1956)

    Google Scholar 

  32. J.D. Cox and G. Pilcher, “Thermochemistry of Organic and Organometallic Compounds”, Academic Press, New York, 1970.

    Google Scholar 

  33. S. Fliszár, “Charge Distributions and Chemical Effects”, Springer-Verlag, New York, 1983

    Google Scholar 

  34. S. Fliszár, F. Poliquin, I. Bădilescu, and E.C. Vauthier, Can. J. Chem. 66, 300 (1988).

    Article  Google Scholar 

  35. G. Del Re, S. Fliszár, M. Comeau, and C. Mijoule, Can. J. Chem. 63, 1487 (1985).

    Article  Google Scholar 

  36. W. Kolos, Theor. Chim. Acta 54, 187 (1980)

    Article  CAS  Google Scholar 

  37. W.A. Sokalski, J. Chem. Phys. 77, 4529 (1982)

    Article  CAS  Google Scholar 

  38. J.G.M. Van Duijneveldt-van de Rijdt and F.B. van Duijneveldt, J. Mol. Struct. Theochem. 89, 185 (1982).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Kluwer Academic Publishers

About this chapter

Cite this chapter

Fliszar, S. (1990). On the Xα Local Spin Density Approximation in the Study of Organic Molecules. In: Bulusu, S.N. (eds) Chemistry and Physics of Energetic Materials. NATO ASI Series, vol 309. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-2035-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-2035-4_6

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-7413-1

  • Online ISBN: 978-94-009-2035-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics