Skip to main content

Part of the book series: NATO ASI Series ((ASEN2,volume 21))

Abstract

Mercury occurs naturally in the Earth’s crust principally as the ore, cinnabar, HgS. Mercury is quite different from other metals in several respects: (i) it is the only metal that is liquid at room temperature; (ii) it is the only metal that boils below 650°C; (iii) it is quite inert chemically, having a higher ionization potential than any other electropositive element with the sole exception of hydrogen; (iv) it exists in oxidation states of zero (Hg°) and 1 (Hg2 2+) in addition to the expected state of 2 (Hg2+). Mercury forms alloys (“amalgams”) with many metals. Mercury and its chemical derivatives are extremely hazardous. Since the early 1960s, the growing awareness of environmental mercury pollution (e.g. the Minamata tragedy resulting from methyl-mercury poisoning) has stimulated the development of more accurate, precise and efficient methods of determining mercury and its compounds in wide variety of matrices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Nriagu, J.O. (Ed.) (1979) Biogeochemistry of mercury in the environment, Elsevier/North-Holland Biomedical Press, Amsterdam.

    Google Scholar 

  2. Craig, P.J. (1986) Organometallic Compounds in the Environment — Principles and Reactions, Longman Group Limited, England.

    Google Scholar 

  3. Lindqvist, O., Johansson, K., Aastrup, M., Andersson, A., Bringmark, L., Hovsenius, L., Iverfeldt, A., Meili, M., Timm, B. (1992) Mercury in the Swedish Environment — Recent Research on Causes, Consequences and Corrective Methods, Kluwer Academic Publishers, Dordrecht, The Netherlands. Reprinted from Wat. Air Soil Pollut. 55, Nos. 1–2.

    Google Scholar 

  4. Watras, J.C. and Huckabee, J.W. (Eds.) (1994) Mercury Pollution — Integration and Synthesis, Lewis Publishers, Boca Raton, Ann Arbor, London, Tokyo. Papers presented at the International conference on Mercury as a Global Pollutant, 1992, Monterey, CA, USA.

    Google Scholar 

  5. Porcela, D., Huckabee, J.W. and Wheatley, B. (Eds.) (1995) Mercury as a Global Pollutant, Proceedings of the Third International Conference, Whistler, Canada, 1994. Kluwer Academic Publishers, Dordrecht, The Netherlands, 1995. Reprinted from Wat. Air SoilPollut. 80 (1–4).

    Google Scholar 

  6. Lo, J. and Wai, C. (1975) Mercury loss from water during storage: Mechanisms and preservation Anal. Chem. 47, 1869–1871.

    Article  CAS  Google Scholar 

  7. Heiden, R. and Aikens, D. (1979) Pretreatment of polyolefin bottles with chloroform and Aqua regia vapor to prevent losses from stored trace mercury(II) solutions, Anal Chem. 51, 151–156.

    Article  CAS  Google Scholar 

  8. Krivan, V. and Haas, H.F. (1988) Prevention of loss mercury(II) during storage of dilute solutions in various containers, Fresenius Z. Anal Chem. 332, 1–6.

    Article  CAS  Google Scholar 

  9. Coyn, R.V. and Collins, J.A. (1972) Loss of mercury from water during storage, Anal. Chem. 44, 1093–1096.

    Article  Google Scholar 

  10. Dumarey, R., Temmerman, E., Dams, R., and Hoste, J. (1985) The accuracy of the vapour-injection calibration method for the determination of mercury by amalgamation/cold vapour atomic absorption spectrometry, Anal. Chim. Acta 170, 337–340.

    Article  CAS  Google Scholar 

  11. Lansens, P., Meuleman, C, and Baeyens, W., (1990) Long-term stability of methylmercury standard solutions in distilled, deionized water, Anal. Chim. Acta 229, 281–285.

    Article  CAS  Google Scholar 

  12. Meuleman, C, Laino, C.C., Lansens, P., and Baeyens, W. (1993) A study of the behaviour of methylmercury compounds in aqueous solutions, and of gas/liquid distribution coefficients, using had space analysis, Wat. Res. 27, 1431–1446.

    Article  CAS  Google Scholar 

  13. Dumarey, R., Dams, R., and Hoste J. (1985) Comparison of the collection and desorption efficiency of activated charcoal, silver, and gold for the determination of vapour-phase atmospheric mercury, Anal. Chem. 57, 2638–2643.

    Article  CAS  Google Scholar 

  14. Schroeder, W.H., Hamilton, M.C., and Stobart, S.R. (1985) The use of noble metals as collection media for mercury and its compounds in the atmosphere, Rev. Anal. Chem. 8(3), 179–209.

    Article  CAS  Google Scholar 

  15. Schroeder, W.H., (1982) Sampling and analysis of mercury and its compounds in the atmosphere, Environ. Sci. Technol 16(7), 362A-400A.

    Article  Google Scholar 

  16. Schroeder, W.H. and Jackson, R.A. (1985) Intern. J. Environ. Anal. Chem. 22, 1–18.

    CAS  Google Scholar 

  17. Fitzgerald, W.F. and Gill, G.A. (1979) Subnanogram determination of mercury by two-stage gold amalgamation and gas phase detection, applied to atmospheric analysis, Anal Chem. 51, 1714–1720.

    Article  CAS  Google Scholar 

  18. Brosset, C. and Iverfeld, A. (1989) Interaction of solid gold with mercury in ambient air, Wat. Air Soil Pollut. 43, 147–168.

    Article  CAS  Google Scholar 

  19. Bloom, N.S., Prestbo E.M., Hall, B., and Vondergeest, E.J. (1995) Determination of atmospheric mercury by collection on iodinated carbon, acid digestion and CV AFS detection, Wat, Soil Air Pollut. 80, 1315–1318.

    Article  CAS  Google Scholar 

  20. Turner, R.R. and Boggle, M.A. (1993) Ambient air monitoring foe mercury around an industrial complex. in Managing Hazardous Air Pollutants, State of the Art, (W. Chow and K. Condor, eds.), Luis Publishers, BOAC Rattan, p. 162.

    Google Scholar 

  21. Braun, H. and Metzger, M. (1987) Interaction of solid gold with mercury in ambient air, Chemosphere 16, 821–828.

    Article  Google Scholar 

  22. Kvietkus, K. and Sakalys, J. (1994) A passive sampler for the monitoring of gaseous mercury amounts in the atmosphere in: Mercury Pollution — Integration and Synthesis, Lewis Publishers, Boca Raton, Ann Arbor, London, Tokyo (Watras, J.C. and Huckabee, J.W. (Eds.)), p. 553–556.

    Google Scholar 

  23. de Mora, S.J., Patterson, J.E., and Bibby, D.M. (1993) Baseline atmospheric mercury studies at Ross Island, Antarctica, Antar. Sci. 5(7), 323–326.

    Google Scholar 

  24. Patterson, J.E. (1984) A differential photoaccoustic mercury detector, Anal. Chim. Acta, 164, 119–126.

    Article  CAS  Google Scholar 

  25. Edner, H., Faris, G.W., Sunesson, A., and Svanberg, S. (1989) Mobile remote sensing system for environmental monitoring, Appl. Opt. 28, 921–930.

    Article  PubMed  CAS  Google Scholar 

  26. Edner, H., Ragnarson, P., Svanberg, S, Wallinder, E., De Liso, A., Ferrara, A., and Maserti, B.E. (1992) Differential absorption Lidar mapping of atmospheric atomic mercury in Italian geothermal fields, J. Geophis. Res. 97, 3779–3786.

    CAS  Google Scholar 

  27. Schroeder, W.H. (1995) Mercury (a) Inorganic and total mercury determination. Encyclopedia of Analytical Science, Harcourt Brace & Company Limited, London.

    Google Scholar 

  28. Horvat, M. and Schroeder, W.H. (1995) Mercury (a) Determination of organomercurials. Encyclopedia of Analytical Science, Harcourt Brace & Company Limited, London.

    Google Scholar 

  29. Bloom, N.S. Prestbo, E.M. Hall, B., and Vondergeest, E.J.(1994) Determination of total gaseous Hg in the ambient atmosphere by collection on iodinated carbon, hot acid digestion and cold vapor atomic fluorescence detection. Internal document Frontier Geosciences, Inc. 414 Pontius Av. North, Suite B, Seattle, WA 98109, USA.

    Google Scholar 

  30. Stratton, W.J. and Lindberg, S.E. (1995) Use of the refluxing mist chamber for measurement of gas-phase mercury(II) species in the atmosphere, Wat. Air Soil Pollut. 80, 1269–1278.

    Article  CAS  Google Scholar 

  31. Schroeder, W.H., (1989) Developments in the speciation of mercury in natural waters, Trends in Anal. Chem. 8(9), 339–347.

    Article  CAS  Google Scholar 

  32. Mason, R.P. and Fitzgerald, W.F., (1991) Mercury speciation in open ocean waters, Wat. Air Soil Pollut. 56, 779–789.

    Article  CAS  Google Scholar 

  33. Mason, R.P. and Fitzgerald, W.F. (1993) The distribution and biogeochemical cycling of mercury in the equatorial Pacific ocean, Deep-Sea Res. 40(9), 1897–1924.

    Article  CAS  Google Scholar 

  34. Lindquist, O. and Rodhe, H. (1985) Atmospheric mercury — A review, Tellus 37B, 136–159.

    Article  Google Scholar 

  35. Carr, R.A. and Wilkniss, P.E. (1973) Mercury: Short-term storage of natural waters, Env. Sci. Technol. 7(1), 62–63.

    Article  CAS  Google Scholar 

  36. Bloom, N.S. (1989) Determination of picogram levels of methylmercury by aqueous phase ethylation, followed by cryogenic gas chromatography with cold vapour atomic fluorescence detection, Can. J. Fish. Aquat. Sci. 46, 1131–1140.

    Article  CAS  Google Scholar 

  37. Ahmed, R., May, K., and Stoppler, M. (1987) Ultratrace analysis of mercury and methylmercury in rainwater using cold vapour absorption spectrometry, Fresenius Z. Anal. Chem. 326, 510–516.

    Article  CAS  Google Scholar 

  38. Heraldsson, C., Westerlund, S., and Öhman, P. (1989) Determination of mercury in natural samples in the sub-nanogram level using inductively coupled plasma/mass spectrometry after reduction to elemental mercury, Anal. Chim. Acta 221, 77–84.

    Article  Google Scholar 

  39. Nojiri, Y., Otsuki, A., and Fuwa, K. (1986) Determination of sub-nanogram per liter levels of mercury in lake water with atmospheric pressure helium microwave induced plasma emission spectrometry, Anal. Chem. 58, 544–547.

    Article  CAS  Google Scholar 

  40. Kvietkus, K., Sakalys, J., and Sopauskas, K. (1983) The application of the atomic fluorescence method for determining mercury concentrations by a photon counter, Atmos. Phys. 8, 127–135.

    CAS  Google Scholar 

  41. Bloom, N.S. and Fitzgerald, W.F. (1988) Determination of volatile mercury species at the picogram level by low-temperature gas chromatography with cold vapour atomic fluorescence detection, Anal. Chim. Acta 208, 151–161.

    Article  CAS  Google Scholar 

  42. Robertson, D. E., Sklarew, D.S., Olsen, K.B., Bloom, N.S., Crecelius, E.A., and Apts, C.W. (1987) Measurement of bioavailable mercury species in fresh water and sediments: Final report. — Electric Power Research Institute, Palo Alto, CA, Project EA-5197 by Batelle Pacific Northwest Laboratory.

    Google Scholar 

  43. Bloom, N.S. and Crecelius, E.A. (1983) Determination of mercury in sea water at sub-nanogram per liter levels, Mar. Chem. 14, 49–59.

    Article  CAS  Google Scholar 

  44. Iverfeldt, Å. (1988) Mercury in the Norwegian fjord Framvaren, Mar. Chem. 23, 441–456.

    Article  CAS  Google Scholar 

  45. Iverfeldt, Å. and Rodhe, H. (1988) Atmospheric transport and deposition of mercury in the Nordic countries. — Report for the Nordic Council of Ministers, L87/285, 1–22, Swedish Environmental Research Institute, Box 47086, 402 58 Goteborg, Sweden.

    Google Scholar 

  46. May, K., Stoeppler, M., and Reisinger, K., (1987) Studies in the Ratio Total Mercury/Methylmercury in the Aquatic Food Chain, Toxicol. Environ. Chem. 13, 153–159.

    Article  CAS  Google Scholar 

  47. Lee, Y.H. and Mowrer, J. (1989) Determination of methylmercury in natural waters at sub-nanogram per liter level by capillary gas chromatography after adsorbent preconcentration, Anal. Chim. Acta 221, 259–264.

    Article  CAS  Google Scholar 

  48. Jones, R.D., Jocobson, M.F., Jaffe, R., West-Thomas, Arfstrom, C, and Alli, A. (1995) Method development and sample processing of water, soil, and tissue for the analyses of total and organic mercury by CV AFS, Water Air Soil Pollut., 80(1–4), 1285–1294.

    Article  CAS  Google Scholar 

  49. Minagawa, K., Takizawa, Y., and Kifune, I. (1979) Determination of very low levels of inorganic and organic mercury in natural waters by CV AAS after preconcentration on a chelating resin, Anal. Chim. Acta 115, 103–110.

    Article  Google Scholar 

  50. Padberg, S. and Stoeppler, M. (1991) Studies of transport and turnover of mercury and methylmercury. Metal Compounds in Environment and Life (Interrelation between Chemistry and Biology) 4, 329–340.

    Google Scholar 

  51. Rapsomanikis, S. and Craig, P.J. (1991) Speciation of mercury and methylmercury compounds in aqueous samples bycChromatography — AAS after ethylation with sodium tetraethylborate, Anal Chim. Acta 248, 563–567.

    Article  CAS  Google Scholar 

  52. Horvat, M., Liang, L., and Bloom, N.S., (1993) Comparison of distillation with other current isolation methods for the determination of methylmercury compounds in low level environmental samples Part II. Water, Anal. Chim. Acta. 282, 153–168.

    Article  CAS  Google Scholar 

  53. WHO/IPCS, Environmental Health Criteria 101; Methylmercury, WHO, Geneva, (1990).

    Google Scholar 

  54. Horvat, M. and Byrne, A.R., (1992) Preliminary study of the effects of some physical parameters on the stability of methylmercury in biological samples. Analyst 117, 665–668.

    Article  PubMed  CAS  Google Scholar 

  55. UNEP/WHO/IAEA, The Determination of Methylmercury, Total Mercury and Total Selenium in Human Hair, Reference Methods for Marine Pollution Studies No. 46 (Draft), UNEP (1987).

    Google Scholar 

  56. Horvat, M. (1989) Development and study of analytical methods for determination of low level mercury concentration and its application in analysis of biological and other environmental samples, Ph.D. Thesis, University of Ljubljana, Slovenia.

    Google Scholar 

  57. Horvat, M., Lupsina, V. and Pihlar, B. (1991) Determination of total mercury in coal fly ash by atomic absorption spectrometry, Anal. Chim. Acta, 243, 71–79.

    Article  CAS  Google Scholar 

  58. Aston, S.R. and Riley, J.P. (1972) The determination of mercury in rocks and sediments, Anal. Chim. Acta 59, 349–354.

    Article  CAS  Google Scholar 

  59. Nicholson, R.A. (1977) Rapid thermal decomposition for the atomic absorption determination of mercury in rocks, soils, and sediments, Analyst 102, 399–403.

    Article  CAS  Google Scholar 

  60. Dumarey, R. and Dams, R. (1984) Pyrolysis/CV AAS for determination of mercury in solid environmental samples, Microchim. Acta 111(3/4), 191–198.

    Article  Google Scholar 

  61. Kosta, L. and Byrne, A.R. (1969) Activation analyses for mercury in biological samples at nanogram levels Talanta 16, 1297.

    Article  PubMed  CAS  Google Scholar 

  62. Byrne, A.R. and Kosta, L. (1974) Simultaneous neutron activation determination of selenium and mercury in biological samples by volatilization, Talanta 211, 1083.

    Article  Google Scholar 

  63. Bartha, A. and Ikrenyi, K. (1982) Interfering effects on the determination of low concentration of mercury in geological materials by cold vapor atomic absorption spectrometry, Anal. Chim. Acta 139, 329–332.

    Article  CAS  Google Scholar 

  64. Chilov, S. (1975) Determination of small amounts of mercury, Talanta 22, 205.

    Article  PubMed  CAS  Google Scholar 

  65. Mitra, S. (1986) Mercury in the Ecosystem, TransTech Publications, Switzerland, 1986. (Chapter 5. Analysis of Mercury).

    Google Scholar 

  66. Shrivastava, A.K. and Tandon, S.G., The determination of mercury: A mini review, Toxicol. Environ. Chem. 5, 341.

    Google Scholar 

  67. Poluektov, N.S., Vitkun, Y.V. and Zelyukova Y.V. (1964) Zh. Anal Khim. 18(8), 937–948.

    Google Scholar 

  68. Hatch, W.R and Ott, W.L. (1968) Anal. Chem. 40, 2085.

    Article  CAS  Google Scholar 

  69. Das, H.A. and van der Sloot, H.A. (1976) Sampling problems and the determination of mercury in surface water, seawater, and air. NBS Special Publication No.422, Washington.

    Google Scholar 

  70. Dams, R., Robbins, J.A., Rahn, K.A, and Winchester, J.W. (1970) Anal. Chem. 42, 861.

    Article  PubMed  CAS  Google Scholar 

  71. Fukushi, K., Willie, N.S., and Sturgeon, R.E. (1993) Subnanograme determination of inorganic and organic mercury by helium-microwave induced plasma-atomic emission spectrometry, Anal. Lett. 26(2), 325–340.

    CAS  Google Scholar 

  72. D’Silva, AP. and Fassel, V.A, (1972) Anal. Chem. 44, 2115.

    Article  PubMed  Google Scholar 

  73. Hintelmann

    Google Scholar 

  74. Jagner, D. (1979) Potentiometric stripping analysis for mercury Anal. Chim. Acta 105, 33–40.

    Article  CAS  Google Scholar 

  75. Perone, S.P. and Kretlow, W.J. (1965) Anal Chem. 37, 968.

    Article  CAS  Google Scholar 

  76. Sipos, L., Nurnberg, H.W., Valenta, P. and Branica, M. (1980) The reliable determination of mercury tracers in sea water by subtractive differential pulse voltammetry at the twin gold electrodes, Anal Chim. Acta 115, 25–42.

    Article  CAS  Google Scholar 

  77. Rodriquez-Vazquez, J. A (1978) Gas-Chromatographic determination of organomercury(II) Compounds, Talanta 25, 299–310.

    Article  Google Scholar 

  78. Sumino, K. (1968) Analysis of organic mercury compounds by gas chromatography — Part II. Determination of organic mercury compounds in various samples (1968) Kobe J. Med. Sci. 14, 131.

    PubMed  CAS  Google Scholar 

  79. Westöö, G., (1966) Determination of Methylmercury Compounds in Foodstuffs I. Methylmercury Compounds in Fish, Identification and Determination”, Acta. Chem. Scand. 20: 2131–2137.

    Article  PubMed  Google Scholar 

  80. Uthe, J.F., Solomon, J., and Grift, B., (1972) A rapid semi-micro method for the determination of methylmercury in fish tissue, J. Assoc. Offic. Anal. Chem. 55, 583–594.

    CAS  Google Scholar 

  81. Zarnegar, P. and Mushak, P. (1974) Quantitative measurements of inorganic mercury and organomercurials in water and biological media by gas liquid chromatography, Anal. Chim. Acta 69, 389–407.

    Article  PubMed  CAS  Google Scholar 

  82. Zelenko, V. and Kosta, L., (1973) A new method for the isolation of methylmercury from biological tissues and its determination at the parts-per-milliard level by gas chromatography”, Talanta 20, 115–123.

    Article  PubMed  CAS  Google Scholar 

  83. Horvat, M., May, K., Stoeppler, M., and Byme, AR. (1988) Comparative studies of methylmercury determination in biological and environmental samples Appl. Organometal. Chem. 2, 515–524.

    Article  CAS  Google Scholar 

  84. Horvat, M., Liang, L., and Bloom, N.S., (1993) Comparison of distillation with other current isolation methods for the determination of methylmercury compounds in low level environmental samples; Part I. Sediments, Anal. Chim. Acta. 281, 135–152.

    Article  CAS  Google Scholar 

  85. O’Reilly, J.E., (1982) Gas chromatographic determination of methyl and ethyl mercury: “passivation” of the chromatographic column, J. Chromatogr. 238, 433.

    Article  PubMed  Google Scholar 

  86. Bulska, E., Emteborg, H., Baxter, D.C., and Frech, W. (1992) Speciation of mercury in human whole blood by capillary gas chromatography with a microwave-induced plasma emission detector system following complexometric extraction and butylation, Analyst 117, 657–665.

    Article  PubMed  CAS  Google Scholar 

  87. Fillipelli, M., Baldi, F., Brinckman, F.E., and Olson, G.J. (1992) Methylmercury determination as volatile methylmercury hydride by purge and trap gas chromatography in line with Fourier Transform Infrared Spectroscopy, Environ. Sci. Technol. 25, 1457–1462.

    Article  Google Scholar 

  88. Lansens, P., Meuleman, C., Laino, C.C., and Baeyens, W., (1993) Comparative study of microwave-induced plasma atomic emission spectrometry and atomic fluorescence spectrometry as gas chromatographic detection for the determination of methylmercury in biological samples, Appl. Organomt. Chem. 7, 45.

    Article  CAS  Google Scholar 

  89. Magos, L., (1971) Selective Atomic-absorption determination of inorganic mercury and methylmercury in undigested biological samples, Analyst 96, 847–852.

    Article  PubMed  CAS  Google Scholar 

  90. Hempel, M., Hintelman, H. and Wilken, R.-D. (1992) Determination of organic mercury species in soils by high-performance liquid chromatography with ultraviolet detection, Analyst 117, 669–674.

    Article  PubMed  CAS  Google Scholar 

  91. Falter, R. and Scholer, H.F. (1994) Interfacing high-performance liquid chromatography and cold vapour atomic absorption spectrometry with on-line UV irradiation for the determination of organic mercury compounds, J. Chromatogr. 675, 253–256.

    Article  CAS  Google Scholar 

  92. Hintelmann, H. and Wilken, R.-D. (1993) The analysis of organic mercury compounds using liquid chromatography with on-line atomic fluorescence spectrometric detection, Appl. Organomet. Chem. 7, 173–180.

    Article  CAS  Google Scholar 

  93. Gage, J.C. (1961) The trace determination of phenyl-and methylmercury salts in biological material, Analyst, 86, 457–459.

    Article  CAS  Google Scholar 

  94. Quevauviller, P., Donard, Q.F.X., Wasserman, J.C, Martin, F.M., and Schneider, J. (1992) Occurrence of methylated tin and dimethylmercury compounds in a mangrove core from Sepetiba Bay, Brazil, Appl. Organomet. Chem. 6, 221–228.

    Article  CAS  Google Scholar 

  95. Wallschlager, D., Hintelmann, H., Evans, R.D., and Wilken, R.-D. (1995) Volatilization of dimethylmercury and elemental mercury from river Elbe flood plain soils, Wat. Air Soil Pollut. 80, 1325–1329.

    Article  Google Scholar 

  96. Horvat M, Mandic, V., Liang, L., Bloom, N.S., Padberg, S., Lee, Y.-H., Hintelmann, H., and Benoit, J. (1994) Certification of methylmercury compounds concentration in marine sediment reference material, IAEA-356. Appl. Organomet. Chem. 8, 533–540.

    Article  CAS  Google Scholar 

  97. Bloom, N.S, Horvat, M., and Watras, C.J. (1995) Results of the international aqueous mercury speciation intercomparison exercise. Wat. Air Soil Pollut. 80, 1257–1268.

    Article  CAS  Google Scholar 

  98. Lépine, L. and Chamberland, A. (1995) Field sampling and analytical intercomparison for mercury and methylmercury determination in natural waters. Wat. Air Soil Pollut. 80, 1247–1256.

    Article  Google Scholar 

  99. Schroeder, W.H., Keeler, G., Kock, H., Roussel, P., Scheeberger, D., and Schaedlich, F. (1994) International field intercomparison of atmospheric mercury measurement methods. Presented at International Conference Mercury as a Global Pollutant, July 10–14, Whistler, BC, Canada

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Kluwer Academic Publishers

About this chapter

Cite this chapter

Horvat, M. (1996). Mercury Analysis and Speciation in Environmental Samples. In: Baeyens, W., Ebinghaus, R., Vasiliev, O. (eds) Global and Regional Mercury Cycles: Sources, Fluxes and Mass Balances. NATO ASI Series, vol 21. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-1780-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-1780-4_1

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-7295-3

  • Online ISBN: 978-94-009-1780-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics