Skip to main content

Mercury in Living Organisms: Sources and Forms of Occurrence, Bioaccumulation, and Determination Methods

  • Living reference work entry
  • First Online:
Handbook of Bioanalytics

Abstract

Mercury (Hg) is a heavy metal with well-known and broadly tested toxicity. Since Hg pollution and its impacts on human health are of global concern, it has become necessary to develop analytical methodologies that will provide tools to obtain reliable analytical information about the levels of Hg in samples, which very often have a complex matrix composition. This chapter summarizes key information on Hg and its chemical forms, sources of its emission to the environment, and the global Hg cycle. In addition, the concepts of bioaccumulation and biomagnification of Hg along the food chain are characterized. This chapter also describes the analytical methods used in the determination of Hg and its compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Sánchez Urı́a, J., & Sanz-Medel, A. (1998). Inorganic and methylmercury speciation in environmental samples. Talanta, 47, 509–524.

    Article  PubMed  Google Scholar 

  2. Selin, N. E. (2009). Global biogeochemical cycling of mercury: A review. Annual Review of Environment and Resources, 34, 43–63.

    Article  Google Scholar 

  3. Wang, Q., Kim, D., Dionysiou, D. D., Sorial, G. A., & Timberlake, D. (2004). Sources and remediation for mercury contamination in aquatic systems—A literature review. Environmental Pollution, 131, 323–336.

    Article  PubMed  Google Scholar 

  4. USEPA. (1997). Mercury study report. Volume III. Fate and transport of mercury in the environment. EPA-452/R-97-005.

    Google Scholar 

  5. Kabata-Pendias, A., & Pendias, H. (1999). Biogeochemia pierwiastków śladowych (Biogeochemistry of trace elements). Wydawnictwo Naukowe PWN.

    Google Scholar 

  6. Kalisińska, E., Ładnocha-Andrearczyk, N., & Kosik-Bogacka, D. I. (2019). Mercury, Hg. In E. Kalisińska (Ed.), Mammals and birds as bioindicators of trace element contaminations in terrestrial environments (pp. 593–653). Springer.

    Chapter  Google Scholar 

  7. Scheuhammer, A. M., Meyer, M. W., Sandheinrich, M. B., & Murray, M. W. (2007). Effects of environmental methylmercury on the health of wild birds, mammals, and fish. Ambio, 36, 12–18.

    Article  CAS  PubMed  Google Scholar 

  8. Misztal-Szkudlińska, M., Szefer, P., Konieczka, P., & Namieśnik, J. (2011). Biomagnification of mercury in trophic relation of great cormorant (Phalacrocorax carbo) and fish in the Vistula Lagoon, Poland. Environmental Monitoring and Assessment, 176, 439–449.

    Article  PubMed  Google Scholar 

  9. Boening, D. W. (2000). Ecological effects, transport, and fate of mercury: A general review. Chemosphere, 40, 1335–1351.

    Article  CAS  PubMed  Google Scholar 

  10. Zilioux, E. J., Porcella, D. B., & Benoit, J. M. (1993). Mercury cycling and effects in fresh water wetland ecosystems. Environmental Toxicology and Chemistry, 12, 2245–2264.

    Article  Google Scholar 

  11. Badzinski, S. S., Flint, P. L., Gorman, K. B., & Petrie, S. A. (2009). Relationships between hepatic trace element concentrations, reproductive status, and body condition of female greater scaup. Environmental Pollution, 157, 1886–1893.

    Article  CAS  PubMed  Google Scholar 

  12. Goutner, V., Becker, P. H., & Liordos, V. (2011). Organochlorines and mercury in livers of great cormorants (Phalacrocorax carbo sinensis) wintering in northeastern Mediterranean wetlands in relation to area, bird age, and gender. Science of the Total Environment, 409, 710–718.

    Article  CAS  Google Scholar 

  13. Skoric, S., Visnjić-Jeftic, Z., Jaric, I., Djikanovic, V., Mickovic, B., Nikcevic, M., & Lenhardt, M. (2012). Accumulation of 20 elements in great cormorant (Phalacrocorax carbo) and its main prey, common carp (Cyprinus carpio) and Prussian carp (Carassius gibelio). Ecotoxicology and Environmental Safety, 80, 244–251.

    Article  CAS  PubMed  Google Scholar 

  14. Shore, R. F., Pereira, M. G., Walker, L. A., & Thompson, D. R. (2011). Mercury in nonmarine birds and mammals. In W. N. Beyer & J. P. Meador (Eds.), Environmental contaminants in biota (pp. 609–642). CRC Press.

    Google Scholar 

  15. Kalisinska, E., Gorecki, J., Okonska, A., Pilarczyk, B., Tomza-Marciniak, A., Budis, H., Lanocha, N., Kosik-Bogacka, D. I., Kavetska, K. M., Macherzynski, M., & Golas, J. (2014). Hepatic and nephric mercury and selenium concentrations in common mergansers, Mergus merganser, from Baltic Region, Europe. Environmental Toxicology and Chemistry, 33, 421–430.

    Article  CAS  PubMed  Google Scholar 

  16. Nam, D.-H. H., Anan, Y., Ikemoto, T., Okabe, Y., Kim, E.-Y. Y., Subramanian, A., Saeki, K., & Tanabe, S. (2005). Specific accumulation of 20 trace elements in great cormorants (Phalacrocorax carbo) from Japan. Environmental Pollution, 134, 503–514.

    Article  CAS  PubMed  Google Scholar 

  17. Burger, J., & Gochfeld, M. (1997). Risk, mercury levels and birds: Relating adverse laboratory effects to field biomonitoring. Environmental Research, 75, 160–172.

    Article  CAS  PubMed  Google Scholar 

  18. Furness, R. W., & Camphuysen, K. (1997). Seabirds as monitors of the marine environment. Journal of Marine Science, 57, 726–773.

    Google Scholar 

  19. Misztal-Szkudlińska, M., Szefer, P., Konieczka, P., & Namieśnik, J. (2012). Mercury in different feather types from Great Cormorants (Phalacrocorax carbo L.) inhabiting the Vistula Lagoon ekosystem in Poland. Bulletin of Environmental Contamination and Toxicology, 89, 841–844.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Houserová, P., Kubáň, V., Kráčmar, S., & Sitko, J. (2007). Total mercury and mercury species in birds and fish in an aquatic ecosystem in the Czech Republic. Environmental Pollution, 145, 185–194.

    Article  PubMed  Google Scholar 

  21. Kral, T., Blahova, J., Doubkova, V., Farkova, D., Vecerek, V., & Svobodova, Z. (2017). Accumulation of mercury in the tissues of the Great Cormorant (Phalacrocorax carbo) from common carp. Bulletin of Environmental Contamination and Toxicology, 98, 167–171.

    Article  CAS  PubMed  Google Scholar 

  22. Evers, D. C., Wiener, J. G., Driscoll, C. T., Gay, D. A., Basu, N., Monson, B. A., Lambert, K. F., Morrison, H. A., Morgan, J. T., Williams, K. A., & Soehl, A. G. (2011). Great Lakes mercury connections: The extent and effects of mercury pollution in the Great Lakes region (pp. 1–44). Biodiversity Research Institute.

    Google Scholar 

  23. Gray, J. S. (2002). Biomagnification in marine systems: The perspective of an ecologist. Marine Pollution Bulletin, 45, 46–52.

    Article  CAS  PubMed  Google Scholar 

  24. Ciesielski, T., Pastukhov, M. V., Szefer, P., & Jenssen, B. M. (2010). Bioaccumulation of mercury in the pelagic food chain of the Lake Baikal. Chemosphere, 78, 1378–1384.

    Article  CAS  PubMed  Google Scholar 

  25. Barwick, M., & Maher, W. (2003). Biotransference and biomagnifications of selenium, cadmium, zinc, arsenic and lead in a temperate seagrass ecosystem from Lake Macquarie Estuary, NSW, Australia. Marine Environmental Research, 56, 471–502.

    Article  CAS  PubMed  Google Scholar 

  26. Jæger, I., Hop, H., Waaler, T., & Gabrielsen, G. W. (2007). Mercury levels in an Arctic marine food web. SPFO-repport 1008/07.

    Google Scholar 

  27. Clarkson, T. W. (1997). The toxicology of mercury. Critical Reviews in Clinical Laboratory Sciences, 34, 369–403.

    Article  CAS  PubMed  Google Scholar 

  28. Rutkowska, M., Dubalska, K., Bajger-Nowak, G., Konieczka, P., & Namieśnik, J. (2014). Organomercury compounds in environmental samples: Emission sources, toxicity, environmental fate, and determination. Critical Reviews in Environmental Science and Technology, 44, 638–704.

    Article  CAS  Google Scholar 

  29. Konieczka, P., Misztal-Szkudlińska, M., Namieśnik, J., & Szefer, P. (2010). Determination of total mercury in fish and cormorant using cold vapour atomic absorption spectrometry. Polish Journal of Environmental Studies, 19, 931–936.

    CAS  Google Scholar 

  30. Endo, T., Kimura, O., Hisamichi, Y., Minoshima, Y., Haraguchi, K., Kakumoto, C., & Kobayashi, M. (2006). Distribution of total mercury, methyl mercury and selenium in pod of killer whales (Orcinus Orca) stranded in the northern area of Japan: Comparison of mature females with calves. Environmental Pollution, 144, 145–150.

    Article  CAS  PubMed  Google Scholar 

  31. Seixas, T. G., Kehrig, H. D. A., Fillmann, G., Di Beneditto, A. P. M., Souza, C. M., Secchi, E. R., Moreira, I., & Malm, O. (2007). Ecological and biological determinants of trace elements accumulation in liver and kidney of Pontoporia blainvillei. Science of the Total Environment, 385(1-3), 208–220.

    Article  CAS  Google Scholar 

  32. Seixas, T. G., Kehrig, H. D. A., Costa, M., Fillmann, G., Di Beneditto, A. P. M., Secchi, E. R., Souza, C. M., Malm, O., & Moreira, I. (2008). Total mercury, organic mercury and selenium in liver and kidney of a South American coastal dolphin. Environmental pollution, 154(1), 98–106.

    Article  CAS  PubMed  Google Scholar 

  33. Szefer, P., Zdrojewska, I., Jensen, J., Lockyer, C., Skóra, K., Kuklik, I., & Malinga, M. (2002). Intercomparison studies on distribution and coassociations of heavy metals in liver, kidney, and muscle of harbor porpoise, Phocoena phocoena, from Southern Baltic Sea and Coastal Waters of Denmark and Greenland. Archives of Environmental Contamination and Toxicology, 42, 508–522.

    Article  CAS  PubMed  Google Scholar 

  34. Orihel, D. M., Paterson, M. J., & Blanchfield, P. J. (2007). Experimental evidence of a linear relationship between inorganic mercury loading and methylmercury accumulation by aquatic biota. Environmental Science & Technology, 41, 4952–4958.

    Article  CAS  Google Scholar 

  35. Brabo, E. S., Angélica, R. S., Silva, A. P., Faial, K. R. F., Mascarenhas, A. F. S., Santos, E. C. O., Jesus, I. M., & Loureiro, E. C. B. (2003). Assessment of mercury levels in soils, waters, Bottom sediments and fishes of acre state in Brazilian Amazon. Water, Air, and Soil Pollution, 147, 61–77.

    Article  CAS  Google Scholar 

  36. Rutkowska, M., Bajger-Nowak, G., Kowalewska, D., Bzoma, S., Kalisińska, E., Namieśnik, J., & Konieczka, P. (2019). Methylmercury and total mercury content in soft tissues of two bird species wintering in the Baltic Sea near Gdansk, Poland. Chemosphere, 219, 140–147.

    Article  CAS  PubMed  Google Scholar 

  37. Maggi, C., Berducci, M. T., Bianchi, J., Giani, M., & Campanella, L. (2009). Methylmercury determination in marine sediment and organisms by Direct Mercury Analyser. Analytica Chimica Acta, 641, 32–36.

    Article  CAS  PubMed  Google Scholar 

  38. Mills, N., Weber, M. J., Pierce, C. L., & Cashatt, D. (2019). Factors influencing fish mercury concentrations in Iowa rivers. Ecotoxicology, 28, 229–241.

    Article  CAS  PubMed  Google Scholar 

  39. Wang, F., Xu, S., Zhou, Y., Wang, P., & Zhang, X. (2017). Trace element exposure of whooper swans (Cygnus cygnus) wintering in a marine lagoon (Swan Lake), northern China. Marine Pollution Bulletin, 119, 60–67.

    Article  CAS  PubMed  Google Scholar 

  40. Bosch, A. C., O’Neill, B., Sigge, G. O., Kerwath, S. E., & Hoffman, L. C. (2016). Heavy metals in marine fish meat and consumer health: A review. Journal of the Science of Food and Agriculture, 96, 32–48.

    Article  CAS  PubMed  Google Scholar 

  41. Florence, T. M. (1982). The speciation of trace elements in waters. Talanta, 29, 345–364.

    Article  CAS  PubMed  Google Scholar 

  42. Li, Y., Liu, S. J., Jiang, D. Q., Jiang, Y., & Yan, X. P. (2008). Gas chromatography-inductively coupled plasma-mass spectrometry for mercury speciation in seafood. Chinese Journal of Analytical Chemistry, 36, 793–798.

    Article  CAS  Google Scholar 

  43. Caruso, J. A., & Montes-Bayon, M. (2003). Elemental speciation studies – New directions for trace metal analysis. Ecotoxicology and Environmental Safety, 56, 148–163.

    Article  CAS  PubMed  Google Scholar 

  44. López, I., Cuello, S., Cámara, C., & Madrid, Y. (2010). Approach for rapid extraction and speciation of mercury using a microtip ultrasonic probe followed by LC-ICP-MS. Talanta, 82, 594–599.

    Article  PubMed  Google Scholar 

  45. Río-Segade, S., & Bendicho, C. (1999). Ultrasound-assisted extraction for mercury speciation by the flow injection-cold vapor technique. Journal of Analytical Atomic Spectrometry, 14, 263–268.

    Article  Google Scholar 

  46. Reyes, L. H., Rahman, G. M. M., & Kingston, H. M. S. (2009). Robust microwave-assisted extraction protocol for determination of total mercury and methylmercury in fish tissues. Analytica Chimica Acta, 631, 121–128.

    Article  CAS  PubMed  Google Scholar 

  47. Leermakers, M., Baeyens, W., Quevauviller, P., & Horvat, M. (2005). Mercury in environmental samples: Speciation, artifacts and validation. TrAC Trends in Analytical Chemistry, 24, 383–393.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Piotr Konieczka .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Konieczka, P., Rutkowska, M., Misztal-Szkudlińska, M., Szefer, P. (2022). Mercury in Living Organisms: Sources and Forms of Occurrence, Bioaccumulation, and Determination Methods. In: Buszewski, B., Baranowska, I. (eds) Handbook of Bioanalytics. Springer, Cham. https://doi.org/10.1007/978-3-030-63957-0_48-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-63957-0_48-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-63957-0

  • Online ISBN: 978-3-030-63957-0

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics