Skip to main content

The Greenhouse Effect, Stratospheric Ozone, Marine Productivity, and Global Hydrology: Feedbacks in the Global Climate System

  • Chapter
Greenhouse Effect, Sea Level and Drought

Part of the book series: NATO ASI Series ((ASIC,volume 325))

Abstract

The problems of greenhouse warming, ozone depletion and changes in global hydrology are inter-related through a number of feedback mechanisms. Recognized feedbacks act through two important loops involving changes in atmospheric chemistry, UV-B radiation at the earth’s surface, and marine productivity. Reliable predictions of future changes in global and regional climate require an understanding of the direction, magnitude and time constants of the various climatic and biochemical feedback processes. Changes in the amount and distribution of precipitation can also have important feedback effects on soil moisture, vegetation, cloudiness, ground and cloud albedo, ocean salinity (through changes in evaporation and runoff), bottom water formation and productivity. Model studies incorporating these and other feedbacks should be useful in determining the sensitivity of the climate system and anthropogenic changes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Andreae, M.O., Ferek, R.J., Bermond, F., Byrd, K.P., Engstrom, R.T., Hardin, S., Houmere, P.D., LeMarrec, F., & Raemdonck, H. (1985) “Dimethyl sulphide in the marine atmosphere.”, Jour. Geophys. Res. 90, pp. 12891 – 12900

    Article  Google Scholar 

  • Bates, T.S., Charlson, R.J., & Gammon, R.H. (1987) “Evidence for the climatic role of marine biogenic sulphur.”, in Nature, 329, pp. 319 – 321

    Article  Google Scholar 

  • Bell, P. (1982) “Methane hydrate and the carbon dioxide question.”, in Carbon Dioxide Review, 1982, New York, Oxford University Press

    Google Scholar 

  • Blake, D.R., & Rowland, F.S. (1988) “Continuing world-wide increase in tropospheric methane, 1978.”, in Science, 239, pp. 1129 – 1131

    Article  Google Scholar 

  • Bruhl, C. & Crutzen, P.J. (1988) “Scenarios of possible changes in atmospheric temperatures and ozone concentrations due to man’s activities, estimated with a one-dimensional coupled photochemical climate model.”, Clim. Dynam. 2, pp. 173 – 203

    Article  Google Scholar 

  • Budyko, M.I. & Izrael, Ya. A. (eds)(1987) “Anthropogenic Climatic Changes.”, Leningrad, Gidrometeoizdat

    Google Scholar 

  • Calkins, J. (1982) “Modelling light loss versus UV-B increase for organisms which control their vertical position in the water column.”, in Calkins, J. (ed), The Role of Solar Ultraviolet Radiation in Marine Ecosystems, New York, Plenum Press, pp. 539 – 542

    Google Scholar 

  • Calkins, J. & Blakefield, M. (1986): “An estimate of the role of current levels of solar ultraviolet radiation in aquatic ecosystems.”, in Effects of Changes in Stratospheric Ozone on Global Climate, UNEP/EPA Report, pp. 211–235

    Google Scholar 

  • Charlson, R.J., Lovelock, J.E., Andreae, M.O., & Warren, S.G. (1987) “Oceanic phytoplankton, atmospheric sulphur, cloud albedo and climate.”, in Nature 326, pp. 655 – 661

    Article  Google Scholar 

  • Eilers, P.H.C. & Peeters, J.C.H. (1988) “A model for the relationship between light intensity and photosynthesis in phytoplankton.”, Eco. Model. 42, pp. 199 – 215

    Article  Google Scholar 

  • Farman, J.C., Gardiner, B.G., & Shanklin, J.D. (1985) “Large losses of total ozone in Antarctica reveal seasonal C10X/NOX interaction.”, in Nature 315, pp. 207 – 210

    Article  Google Scholar 

  • Frederick, J.E., & Snell, H.E. (1988) “Ultraviolet radiation levels during the Antarctic Spring.”, in Science, 241, pp. 439 – 440

    Article  Google Scholar 

  • Grotch, S. (1988) “Regional intercomparisons of general circulation model predictions and historical climate data.”, Technical Report TR041, U.S. Dept. of Energy, Washington D.C.

    Google Scholar 

  • Hameed, S. & Cess, R. (1983) “Impact of a global warming on biosphere sources of methane and its climatic consequences.”, Tellus, 35B, pp. 1 – 7

    Article  Google Scholar 

  • Hansen, J.E., Fung, I., Lacis, A., Lebedeff, S., Ruedy, R., & Russell, G. (1988) “Global climate changes as forecast by the Goddard Institute for Space Studies three-dimensional model.”, in Jour. Geophys. Res., 93, pp. 9341 – 9364

    Article  Google Scholar 

  • Hansen, J.E., & Lebedeff, S. (1988) “Global surface air temperatures: Update through 1987.”, in Geophys. Res. Lett., 15, pp. 323 – 326

    Article  Google Scholar 

  • Heath, D.F. (1988) “Non-seasonal changes in total column ozone from satellite observations, 1970–1986”, in Nature 332, pp. 219 – 227

    Article  Google Scholar 

  • Hoffert, M.I., Flannery, B.P., Callegari, A.J., Hsieh, C.T., & Wiscomb, W. (1983) “Evaporation-limited tropical ocean temperatures as a constraint on climate sensitivity.”, J. Atmos. Sci. 40, pp. 1659 – 1668

    Article  Google Scholar 

  • Hofmann, D.J., Harder, J.W., Rolf, S.R., & Rosen, J.M. (1987) “Balloon-borne observations of the development and vertical structure of the Antarctic zone hole in 1986.”, in Nature 326, pp. 59 – 62

    Article  Google Scholar 

  • Hofmann, D.J., Deshler, T.L., Aimedieu, P., Matthews, W.A., Johnston, P.V., Kondo, Y., Sheldon, W.R., Byrne, G.J., & Benbrook, J.R. (1989) “Stratospheric clouds and ozone depletion in the Arctic during January 1989.”, in Nature 340, pp. 117 – 121

    Article  Google Scholar 

  • Jones, P.D., Wigley, T.M.L., Folland, C.K., Parker, D.E., Angell, J.K., Lebedeff, S., & Hansen, J.E. (1988) “Evidence for global warming in the past decade.”, in Nature 338, p. 790

    Article  Google Scholar 

  • Karoly, D.J. (1987) “Southern hemisphere temperature trends: A possible greenhouse gas effect?”, in Geophys. Res. Lett. 14, pp. 1139 – 1141

    Article  Google Scholar 

  • Kelly, J . (1986) “How might enhanced levels of solar ultraviolet UV-B radiation affect marine ecosystems?”, in Effects of Changes in Stratospheric Ozone and Global Climate, UNEP/EPA, pp. 237–258

    Google Scholar 

  • Khalil, M. A.K., & Rasmussen, R. A. (1985) “Causes of increasing atmospheric methane: Depletion of hydroxyl radicals and the rise of emissions.”, in Atmos. Environ. 19, pp. 397 – 407

    Article  Google Scholar 

  • Khalil, M. A.K., & Rasmussen, R.A. (1988) “Carbon monoxide in the Earth’s atmosphere: Indications of a global increase.”, in Nature 332, pp. 242 – 245

    Article  Google Scholar 

  • Kvenvolden, K.A. (1988) “Methane hydrates and global climate.”, in Global Geochem. Cycles 2, pp. 221 – 229

    Article  Google Scholar 

  • Lachenbruch, A.H., & Marshall, B.V. (1986) “Changing climate: Geothermal evidence from permafrost in the Alaskan Arctic.”, in Science 234, pp. 689 – 696

    Article  Google Scholar 

  • Lapenis, A.G. (1988) “Biodynamic mechanism of changes in atmospheric CO2 concentration.”, Akad. Nauk. SSSR. 6, pp. 794 – 799

    Google Scholar 

  • Lapenis, A.G., Rosanov, E.V., & Caldeira, K.G. (1989) “Effect of ocean circulation on the ratio between organic carbon and calcium carbonate primary productivity.”, Global Biogeochem. Cycles (submitted)

    Google Scholar 

  • Lashof, D. A. (1989) “The dynamic greenhouse: Feedback processes that may influence future concentrations of atmospheric trace gases.”, Climatic Change 14, pp. 213 – 242

    Article  Google Scholar 

  • Legrand, M.R., Delmas, R.J., & Charlson, R.J. (1988) “Climate forcing implications from Wostok ice-core sulphate data.”, in Nature 334, pp. 418 – 420

    Article  Google Scholar 

  • Liu, S.C., Donahue, T.M., Cicerone, R.J., & Chameides, W.L. (1976) “Effect of water vapour on the destruction of ozone in the stratosphere perturbed by CIOX or NOX pollutants.”, in Jour. Geophys. Res. 81, pp. 3111–3118 Macintyre, F. (1978) “On the temperature coefficient of PCO2 in seawater.”, Clim. Change 1, pp. 349 – 354

    Article  Google Scholar 

  • Macintyre, F. (1978) “On the temperature coefficient of PCO2 in seawater.”, Clim. Change 1, pp. 349 – 354

    Article  Google Scholar 

  • Matthews, E., Fung, I. (1987) “Methane emission from natural wetlands; Global distribution, area, and environmental characteristics of sources.”, Global Biogeochem. Cycles 1, pp. 61 – 86

    Article  Google Scholar 

  • McElroy, M.B., Salawitch, R.J., & Wofsy, S.C. (1986) “Antarctic 03: Chemical mechanisms for the spring decrease.”, Geophys, Res. Lett. 13, pp. 1296 – 1299

    Article  Google Scholar 

  • Mitchell, J.F.B. (1989) “The “Greenhouse” effect and climate change.”, Rev. of Geophys. 27, pp. 115 – 139

    Article  Google Scholar 

  • Molina, M.J., Tso, T., Molina, L.T., & Wang, F.C. (1987) “Antarctic stratospheric chemistry of chlorine nitrate, hydrogen chlorine, and ice: Release of active chlorine.”, in Science 238, pp. 1253 – 1257

    Article  Google Scholar 

  • Mount, G.H., Solomon, S., Sanders, R.W., Jakoubek, R.O., & Schmeltekopf, A.L. (1988) “Observations of stratospheric NO2 and O3 at Thule, Greenland.”, in Science 242, pp. 555 – 558

    Article  Google Scholar 

  • National Research Council (1989) “Ozone depletion, greenhouse gases, and climate change.”, Washington D.C., National Academy Press

    Google Scholar 

  • Ramanathan, V., Cicerone, R.J., Singh, H.B., & Kiehl, J.T. (1985) “Trace gas trends and their potential role in climate change.”, Jour. Geophys. Res. 90, pp. 5547 – 5566

    Article  Google Scholar 

  • Rampino, M.R., & Volk, T. (1988) “Mass extinctions, atmospheric sulphur and climatic warming at the K/T boundary.”, in Nature 332, pp. 63 – 65

    Article  Google Scholar 

  • Raynaud, D., Chappellaz, J., Barnola, J.M., Korotkevitch, Y.S., & Lorius, C. (1988) “Climatic and CH4 cycle implications of glacial-interglacial CH4 change in the Vostok ice core.”, in Nature 333, pp. 655 – 657

    Article  Google Scholar 

  • Reid, G.C., & Cage, K.S. (1981) “on the annual variation in the height of the tropical tropopause.”, J. Atmos. Sci. 38, pp. 1928 – 1938

    Article  Google Scholar 

  • Revelle, R. (1983) “Methane hydrates in continental slope sediments and increasing atmospheric carbon dioxide.”, in Changing Climate, Washington D.C., National Academy Press

    Google Scholar 

  • Rinsland, C.P., Levine, J.S., & Miles, T. (1985) “Concentration of methane in the troposphere deduced from 1951 infrared solar spectra.”, in Nature 318, pp. 245 – 249

    Article  Google Scholar 

  • Rodgers, C. (1988) “Global ozone trends reassessed.”, in Nature 332, p. 201

    Article  Google Scholar 

  • Rowland, F.S. (1989) “The role of halocarbons in stratospheric ozone depletion.”, in Ozone Depletion, Greenhouse Gases, and Climate Change, Washington D.C., National Academy Press

    Google Scholar 

  • Saigne, C., & Legrand, M. (1987) “Measurements of methanesulphonic acid in Antarctic ice.” in Nature 330, pp. 240 – 242

    Article  Google Scholar 

  • Savoie, D.L., & Prospero, J.M. (1989) “Comparison of oceanic and continental sources of non-sea-salt sulphate over the Pacific Ocean.”, in Nature 339, pp. 685 – 689

    Article  Google Scholar 

  • Schlesinger, M.E. (1985) “Analysis of results from energy balance and radiative-convective models.”, in Projecting the Climatic Effects of Increasing Carbon Dioxide, Washington, D.C., U.S. Dept. of Energy, pp. 280 – 319

    Google Scholar 

  • Schlesinger, M.E. (1989) “Quantitative analysis of feedbacks in climate model simulations.”, in Berger, A., Dickinson, R.E. and Kidson, J. W. (eds.) Understanding Climate Change, Geophysical Monograph 52, Washington, D.C., American Geophysical Union, pp. 177 – 187

    Google Scholar 

  • Schwartz, S.E. (1988) “Are global cloud albedo and climate controlled by marine phytoplankton?”, in Nature 336, pp. 441 – 445

    Article  Google Scholar 

  • Schwartz, S.E. (1988) “Are global cloud albedo and climate controlled by marine phytoplankton?”, in Nature 336, pp. 441 – 445

    Article  Google Scholar 

  • Schwartzman, D.W., & Volk, T. (1989) “Biotic enhancement of weathering and the habitability of the Earth.”, in Nature (in press)

    Google Scholar 

  • Smith, R.C., & Baker, K.S. (1982) “Assessment of the influence of enhanced UV-B on marine primary productivity.”, in Calkins, J. (ed.), The Role of Solar Ultraviolet Radiation in Marine Ecosystems, New York, Plenum Press, pp. 509 – 537

    Google Scholar 

  • Solomon, S., Mount, G.H., Sanders, R.W., Jakoubek, R.O., & Schmeltekopf, A.L. (1988) “Observations of nighttime abundance of Oclo in the winter stratosphere above Thule, Greenland.”, in Science 242, pp. 550 – 555

    Article  Google Scholar 

  • Stauffer, B., Fischer, G., Neftel, A., & Oeschger, H. (1985) “Increases in atmospheric methane recorded in Antarctic ice core.”, in Science 229, pp. 1386 – 1388

    Article  Google Scholar 

  • Stolarski, R.S., Krueger, A.J., Schoeberl, M.R., McPeters, R.D., Newman, P.A., & Alpert, J.C. (1986) “Nimbus 7 satellite measurements of the springtime Antarctic ozone decrease.”, in Nature 322, pp. 808 – 811

    Google Scholar 

  • Toon, O.B., Hamill, P., Turco, R.P., & Pinto, J. (1986) “Condensation of HNO3 and Hcl in the winter polar stratosphere.”, Geophys. Res. Lett. 13, pp. 1284 – 1287

    Article  Google Scholar 

  • Velichko, A.A. (1989) “Palaeoclimatic reconstructions as a forecast element.”, preprint

    Google Scholar 

  • Viecelli, J.A. (1984) “The atmospheric carbon dioxide response to oceanic primary productivity fluctuations.”, Clim. Change 6, pp. 153 – 166

    Article  Google Scholar 

  • Wayne, R.P. (1985) “Chemistry of atmospheres.”, Oxford, Clarendon Press

    Google Scholar 

  • Wigley, T.L. (1989) “Possible climate change due to SO2-derived cloud condensation nuclei.”, in Nature 339, pp. 365 – 367

    Article  Google Scholar 

  • Wuebbles, D.J., Grant, K.E., Connell, P.S., & Penner, J.E. (1989) “The role of atmospheric chemistry in climate change.”, Jour. Air Pollution Control 39, pp. 22 - 28

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Kluwer Academic Publishers

About this chapter

Cite this chapter

Rampino, M.R., Etkins, R. (1990). The Greenhouse Effect, Stratospheric Ozone, Marine Productivity, and Global Hydrology: Feedbacks in the Global Climate System. In: Paepe, R., Fairbridge, R.W., Jelgersma, S. (eds) Greenhouse Effect, Sea Level and Drought. NATO ASI Series, vol 325. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-0701-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-0701-0_1

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6801-7

  • Online ISBN: 978-94-009-0701-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics