Skip to main content

The Sun as the Ultimate Challenge to Astrophysics: The Vital Phase of Solar Physics

  • Chapter
Magnetodynamic Phenomena in the Solar Atmosphere
  • 13 Accesses

Abstract

Observations indicate that the various active phenomena observed on the Sun are the principal constituents of the activity of other solitary late main sequence stars although in different proportions and prominence. But our ability to provide quantitative descriptions of the activity of other stars is limited observationally by our inability to resolve their disks and theoretically by the absence of clear ideas and quantitative theory for the phenomena in the Sun. Thus, for instance, it is not clear why the Sun is obliged to form spots, so it is not clear how to interpret the enormous spot areas that appear on some M-dwarfs. Similary, it is not clear why some M-stars produce flares 103 times more energetic than on the Sun. The same holds for the structure of the X-ray coronas of other stars, the strength of their stellar winds, the nature of the stellar dynamos, and the luminosity variations in step with their general level of activity. None of these phenomena are properly understood for the Sun, yet there is reason to expect that the crucial observational studies of the Sun (solar microscopy and spectrometry in visible, UV, and X-rays, helioseismology) as well as critical attention to theoretical possibilities, promise progress with several aspects of the problem. The essential point is that the magnetohydrodynamics of the high Reynolds and Lundquist numbers characterizing the convective zone of the Sun is qualitatively different from the familiar concepts of hydrodynamics and the plasma physics laboratory. The fibril state of the magnetic field at the visible surface of the Sun is the direct indication of that fact, and it appears that the dynamo and the several consequences of the dynamo fields can be understood only in terms of the complicated dynamics of magnetic fibrils. We shall be able to estimate the properties of the fibril fields of other stars only when we better understand the physics of fibrils in the Sun.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Baliunas, S.L. et al, (1995) Chromospheric variations in main sequence stars, Astrophys. J. 438, 269

    Article  ADS  Google Scholar 

  • D’Silva, S. (1993) Can equipartition fields produce the tilts of bipolar magnetic regions, Astrophys. J. 407, 385

    Article  Google Scholar 

  • D’Silva, S. and Choudhuri, A.R. (1993) A theoretical model for tilts of bipolar magnetic regions, Astron. Astrophys. 272, 621

    ADS  Google Scholar 

  • Eddy, J.A. (1977a) Climate and the changing Sun, Clim. Change 1, 173

    Article  Google Scholar 

  • Eddy, J.A. (1977b) Historical evidence for the existence of the solar cycle, in The Solar Output and its Variation, Boulder, Colorado Associated University Press, ed. O. R. White, p. 51

    Google Scholar 

  • Eddy, J.A. (1983) The Maunder Minimum, a reappraisal, Solar Phys. 89, 195

    Article  ADS  Google Scholar 

  • Fan, Y., Fisher, G.H., and DeLuca, E.E. (1993) The origin of morphological asymmetries in bipolar active regions, Astrophys. J. 405, 390

    Article  ADS  Google Scholar 

  • Fan, Y., Fisher, G.H., and McClymont, A.N. (1994) Dynamics of emerging active region flux loops, Astrophys. J. 436, 907

    Article  ADS  Google Scholar 

  • Fan, G.H., McClymont, A.N., and Chow, D.Y. (1991) The stretching of magnetic flux tubes in the convective overshoot region, Astrophys. J. 374, 766

    Article  ADS  Google Scholar 

  • Foukal, P. and Lean, J. (1986) The influence of faculae on total solar irradiance and luminosity, Astrophys. J. 302, 826

    Article  ADS  Google Scholar 

  • Friis-Christensen, E., and Lassen, K. (1991) Length of the solar cycle: An indicator of solar activity closely associated with climate, Science 254, 698

    Article  ADS  Google Scholar 

  • Gaizauskas, V., Harvey, K.L., Harvey, J.W., and Zwaan, C. (1983) Large-scale patterns formed by solar active regions during the ascending phase of cycle 21, Astrophys. J. 265, 1056

    Article  ADS  Google Scholar 

  • Hameed, S., and Gong, G. (1994) Variation of spring climate in lower-middle Yangtse River Valle and its relation with solar-cycle length, Geophys. Res. Lett. 21, 2693

    Article  ADS  Google Scholar 

  • Krause, F., Rädler, K.H., and Rödiger, G. (1993) The Cosmic Dynamo, Dordrecht, Kluwer Academic Publishers

    Book  Google Scholar 

  • Kuhn, J.R., and Libbrecht, K.G. (1991) Nonfacular solar luminosity variations, Astrophys. J. Lett. 381, L35

    Article  ADS  Google Scholar 

  • Martin, S. (1988) The indentification and interaction of network, intranetwork, and ephemeral-region magnetic fields, Solar Phys. 117, 243

    Article  ADS  Google Scholar 

  • Parker, E.N. (1963) A kinematical model of turbulent hydromagnetic fields, Astrophys. J. 138, 226

    Article  ADS  Google Scholar 

  • Parker, E.N. (1979a) Sunspots and the physics of magnetic flux tubes. II. Aerodynamic drag, Astrophys. J. 230, 914

    Article  ADS  Google Scholar 

  • Parker, E.N. (1979b) Sunspots and the physics of magnetic flux tubes. III. Aerodynamic lift, Astrophys. J. 231, 250

    Article  ADS  Google Scholar 

  • Parker, E.N. (1979c) Sunspots and the physics of magnetic flux tubes. VI. Convective propulsion, Astrophys. J. 232, 282

    Article  ADS  Google Scholar 

  • Parker, E.N. (1979d) Cosmical Magnetic Fields, Oxford, Clarendon Press, §17.6

    Google Scholar 

  • Parker, E.N. (1981) The dissipation of inhomogeneous magnetic fields and the problem of coronae. II. The dynamics of dislocated flux tubes, Astrophys. J. 244, 644

    Article  ADS  Google Scholar 

  • Parker, E.N. (1982) The dynamics of fibril magnetic fields. II. The mean field equations, Astrophys. J. 256, 302

    Article  ADS  Google Scholar 

  • Parker, E.N. (1983a) Magnetic neutral sheets in evolving fields. I. General theory, Astrophys. J. 264, 635

    Article  ADS  Google Scholar 

  • Parker, E.N. (1983b) Magnetic neutral sheets in evolving fields. II. Formation of the solar corona, Astrophys. J. 264, 642

    Article  ADS  Google Scholar 

  • Parker, (1984a) Stellar fibril magnetic fields I. Reduced energy state, Astrophys. J. 283, 343

    Article  ADS  Google Scholar 

  • Parker, E.N. (1984b) Stellar fibril magnetic fields. II. Two dimensional magnetohydrodynamic equations, Astrophys. J. 249, 47

    Google Scholar 

  • Parker, E.N. (1984c) Stellar fibril magnetic fields. III. Convective counterflow, Astrophys. J. 294, 57

    Article  ADS  Google Scholar 

  • Parker, E.N. (1987) The dynamical oscillation and propulsion of magnetic fields in the convective zone of the Sun. I. General considerations, Astrophys. J. 312, 868

    Article  ADS  Google Scholar 

  • Parker, E.N. (1991a) Heating solar coronal holes, Astrophys. J. 372, 719

    Article  ADS  Google Scholar 

  • Parker, E.N. (1991b) The phase mixing of Alfven waves, coordinated modes, and coronal heating, Astrophys. J. 376, 355

    Article  ADS  Google Scholar 

  • Parker, E.N (1993) A solar dynamo surface wave at the interface between convection and nonuniform rotation, Astrophys. J. 408, 707

    Article  ADS  Google Scholar 

  • Parker, E.N. (1994a) Summary comments, in The Solar Engine and its Influence on Terrestrial Atmosphere and Climate, Berlin, Springer-Verlag, ed. E. Nesme-Ribes, p. 527

    Chapter  Google Scholar 

  • Parker, E.N. (1994b) Theoretical interpretation of magnetic activity, in The Sun as a Variable Star, Solar and Stellar Irradiance Variations, Proc. IAU Symp. No. 143, Boulder, Colorado 1993, Cambridge, Cambridge University Press, ed. J. M. Pap, C. Fröhlich, H. S. Hudson, and S. K. Solanki, p. 264

    Google Scholar 

  • Parker, E.N. (1994c) Theoretical properties of Ω-loops in the convective zone of the Sun. Emerging bipolar magnetic regions, Astrophys. J. 433, 867

    Article  ADS  Google Scholar 

  • Parker, E.N. (1994d) Spontaneous Current Sheets in Magnetic Fields, New York, Oxford University Press.

    Google Scholar 

  • Parker, E.N. (1994e) Origins of the solar magnetic field, in Solar Magnetic Fields, Cambridge, Cambridge University Press, ed. M. Schüssler and W. Schmidt, p. 94

    Google Scholar 

  • Parker, E.N. (1995a) Theoretical properties of Ω-loops in the convective zone of the Sun. Origin of enhanced solar irradiance, Astrophys. J. 440, 415

    Article  ADS  Google Scholar 

  • Parker, E.N. (1995b) Theoretical properties of Ω-loops in the convective zone of the Sun, Astrophys. J. 442, 405

    Article  ADS  Google Scholar 

  • Piddington, J.H. (1978) The flux-rope-fiber theory of solar magnetic fields, Astrophys. Space Sci. 55, 401

    Article  ADS  Google Scholar 

  • Porter, J.G. and Moore, R.L. (1988) in Proc. 9th Sacramento Peak Summer Symposium, 1987, Sunspot. N.M.: NSO/Sacramento Peak, ed. R.C. Altrock, p. 30

    Google Scholar 

  • Porter, J.G. and Moore, R.L. (1988) in Proc. 9th Sacramento Peak Summer Symposium, 1987, Sunspot. N.M.: NSO/Sacramento Peak, ed. R.C. Altrock, p. 30

    Google Scholar 

  • Ribes, J.C., and Nesmes-Ribes, E. (1993) The solar sunspot cycle in the Maunder Minimum AD 1645 to AD 1715, Astron. Astrophys. 276, 549

    ADS  Google Scholar 

  • Schüssler, M., Caligar, P., Feriz-Mas, A., and Moreno-Insertis, F. (1994) Instability and eruption of magnetic flux tubes in the solar convective zone, Astron. Astrophys. 281, L69

    ADS  Google Scholar 

  • Sprüit, H.C. (1974) A model of the solar convection zone, Solar Phys. 34, 277

    Google Scholar 

  • Sprüint, H.C. (1979) Convective collapse of flux tubes, Solar Phys. 61, 363

    Google Scholar 

  • Sprüit, H.C., and van Ballegooijen, A.A. (1982a) Stability of teroidal flux tubes in stars, Astron. Astrophys. 106, 58

    ADS  Google Scholar 

  • Sprüit, H.C., and van Ballegooijen, A.A. (1982b) Stability of teroidal flux tubes in stars, erratum, Astron. Astrophys. 113, 350

    ADS  Google Scholar 

  • Tsnganos, K.C. (1979) Sunspots and the physics of magnetic flux tubes. IV. Aerodynamic lift on a thin cylinder in convective flows, Astrophys. J. 231, 260

    Article  ADS  Google Scholar 

  • Vainshtein, S.I., Parker, E.N., and Rosner, R. (1993) On the generation of strong magnetic fields, Astrophys. J. 404, 773

    Article  ADS  Google Scholar 

  • Vishniac, E.T. (1995) The dynamics of flux tubes in high β plasma, Astrophys. J. (in press)

    Google Scholar 

  • Willson, R.C., and Hudson, H.S. (1991) The Sun’s lumnosity over a complete cycle, Nature 351, 42

    Article  ADS  Google Scholar 

  • Withbroe, G.L., and Noyes, R.W. (1977) Mass and energy flow in the solar chromospheres and corona, Ann. Rev. Astron. Astrophys. 15, 363

    Article  ADS  Google Scholar 

  • Zhang, Q., Soon, W.H., Baliunas, S.L., Lockwood, G.W., Skiff, B.A., and Radick, R.R. (1994) A method for determing possible brightness variations of the Sun in past centuries from observations of solar-type stars, Astrophys. J. Lett. 427, L111

    Article  ADS  Google Scholar 

  • Zwaan, C. (1978) On the appearance of magnetic flux in the solar photosphere, Solar Phys. 60, 213

    Article  ADS  Google Scholar 

  • Zwaan, C. (1985) The emergence of magnetic flux, Solar Phys. 100, 397

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Kluwer Academic Publishers

About this chapter

Cite this chapter

Parker, E.N. (1996). The Sun as the Ultimate Challenge to Astrophysics: The Vital Phase of Solar Physics. In: Uchida, Y., Kosugi, T., Hudson, H.S. (eds) Magnetodynamic Phenomena in the Solar Atmosphere. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-0315-9_72

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-0315-9_72

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6627-3

  • Online ISBN: 978-94-009-0315-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics