Skip to main content

Use of Chemistry as a Powerful Means for Synthesis and Processing of Nano Particles

  • Chapter
Fine Particles Science and Technology

Part of the book series: NATO ASI Series ((ASHT,volume 12))

Abstract

The chemical synthesis of small particulate systems has become an interesting area of scientific activities since the potential of nano-scale systems has been demonstrated by the early work of Gleiter [1] and Henglein [2]. Colloidal systems in liquid phases with particle sizes in the lower nano range, however, have been known for centuries, and commercial applications of SiO2 sols are known since the middle of the last century. It is a matter of fact that during each precipitation process from solution a growth reaction takes place and a nano size range is passed through. If the precipitation process is carried out far away from the point of zero charge (p. z. c.), the particles will be charged and prevented from agglomeration as long as the conditions for stability (e.g. critical distance, particle size versus precipitation) are not violated. This leads to stable sols, the concentration of which has to be kept rather low, as described in [3] and the references cited therein. Approaching the p. z. c., the interaction mechanisms get activated and gels (strong interaction) or precipitates (slow interaction) are formed. In fig. 1 the differences of charge stabilized and sterically stabilized systems during upconcentration are shown. In the charge stabilized systems, due to a strong interaction of surface groupings which are necessary to build up surface charges, in general, aggregates to be formed, are rather uncontrolled, and irregularly structured gels or precipitates are formed. As a consequence, in gels the green density is rather low (≤20% by volume). If the surface of the small particles, however, is covered by unreactive groupings, only weak van der Waal’s forces are active and it should be possible to obtain more regularly packed solids. Typical interaction mechanisms are hydrogen bonds (in solution), dipole-dipole interactions, hydrophobic interactions, van der Waal’s forces or even the formation of chemical bonds.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H. Gleiter, Nanocrystalline Materials. Pergamon Press, Oxford (1989).

    Google Scholar 

  2. A. Henglein, Topics in Current Chemistry: Mechanisms of reactions on colloidal microelectrodes and size quantization effects, 143 (1988), 115.

    Google Scholar 

  3. C. J. Brinker and G. W. Scherer, Sol-Gel Science, Academic Press Inc., Boston (1990).

    Google Scholar 

  4. J. W. Christian, The Theory of Transformations in Metals and Alloys. Pergamon Press, London, 1975.

    Google Scholar 

  5. A. C. Zettlemoyer, ed., Nucleation, Marcel Dekker, New York, 1969.

    Google Scholar 

  6. D. C. Bradley, R. G. Mehrotra and D. P. Gaur, Metal Alkoxides, Academic Press, London, 1978.

    Google Scholar 

  7. R. Naß and H. Schmidt, in: Ceramic Powder Processing Science; eds.: H. Hausner, G. L. Messing, S. Hirano. Deutsche Keramische Gesellschaft e. V., Köln, 1989, 69.

    Google Scholar 

  8. C. Sanchez and M. In. J. Non-Cryst. Solids 147&148 (1992) 1.

    Article  Google Scholar 

  9. R. Kasemann, E. Geiter, H. Schmidt, E. Arpac, G. Wagner and V. Gerhard, Verfahren zur Herstellung von Zusammensetzungen auf der Basis von epoxidgruppenhaltigen Silanen. 10.11.1993, German Offen 43 38 361 Al.

    Google Scholar 

  10. H. Schmidt, in: Proceedings 8th Intl. Workshop on Glasses and Ceramics from Gels, ed.: R. M. Almeida, J. Sol-Gel Science and Technology (in print).

    Google Scholar 

  11. M. Mennig, M. Schmitt, U. Becker, G. Jung and H. Schmidt, in: SPIE Vol. 2288 “Sol-Gel Optics Ill”, ed.: J. D. Mackenzie. SPIE, Bellingham/Washington, 1994, 130.

    Chapter  Google Scholar 

  12. M. Schmitt, M. Mennig, private communication.

    Google Scholar 

  13. H. Schmidt and R. Naß, in: Proc. Austceram ‘94, eds.: C. C. Sorell and A. J. Ruys. International Ceramic Monographs, Vol. 1, No. 2, Australasian Ceramic Society, Sydney, 1994, 1065.

    Google Scholar 

  14. H. Schmidt, R. Kasemann, T. Burkhart, G. Wagner, E. Arpac and E. Geiter, in: ACS Symposium Series No. 585: Hybrid Organic-Inorganic Composites, eds.: J. E. Mark, C. Y.-C. Lee and P. A. Bianconi, American Chemical Society, Washington, 1995, 331.

    Google Scholar 

  15. C. Becker, M. Zahnhausen, H. Krug and H. Schmidt, in: Ceramic Transactions Vol. 55: Sol-Gel Science and Technology, eds.: E. Pope, S. Sakka and L. Klein. American Ceramic Society, 1995, 299.

    Google Scholar 

  16. M. Popall, H. Meyer, H. Schmidt and J. Schulz, Mat. Res. Soc. Symp. Proc. 180 (1990), 995.

    Article  CAS  Google Scholar 

  17. F. Tiefensee, Ph. D. Thesis, University of Saarland, Saarbrücken, 1994.

    Google Scholar 

  18. H. Schmidt, H. Krug, P. Oliveira, private communication.

    Google Scholar 

  19. H. Schmidt, in: Ceramic Transactions, Vol. 55: Sol-Gel Science and Technology. Eds.: E. Pope, S. Sakka and L. Klein, American Ceramic Society, 1995, 253.

    Google Scholar 

  20. T. Wood and H. Dislich, in: Ceramic Transactions Vol. 55: Sol-Gel Science and Technology, eds.: E. Pope, S. Sakka and L. Klein. American Ceramic Society, 1995, 3.

    Google Scholar 

  21. M. Kresse, R. Lawaczeck and D. Pfefferer, EP0516252A2.

    Google Scholar 

  22. H. Pilgrim, EP 0 284 549 A2.

    Google Scholar 

  23. K. Osseo-Asare and F. J. Arriagada, in: Ceramic Transactions, Vol. 12, Ceramic Powder Science III, eds.: G. L. Messing, S. Hirano and H. Hausner, Am. Ceram. Soc., Ohio 1990.

    Google Scholar 

  24. H. Schmidt, R. Naß and D. Burgard, in: Proceedings Eurogel 1992, Dec. 2. - 4., Colmar.

    Google Scholar 

  25. T. Krajewski, private communication.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Kluwer Academic Publishers

About this chapter

Cite this chapter

Schmidt, H., Lesniak, C., Schiestel, T. (1996). Use of Chemistry as a Powerful Means for Synthesis and Processing of Nano Particles. In: Pelizzetti, E. (eds) Fine Particles Science and Technology. NATO ASI Series, vol 12. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-0259-6_43

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-0259-6_43

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-4047-8

  • Online ISBN: 978-94-009-0259-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics