Skip to main content

nm-Semiconductor Particles and Molecular Aggregates as Redox Species

  • Chapter
Fine Particles Science and Technology

Part of the book series: NATO ASI Series ((ASHT,volume 12))

  • 519 Accesses

Abstract

It is well established that the electronic levels in semiconductors shift when the latter are prepared in the form of nm-size particles [1]. Correspondingly the optical behavior of such small particles depends on their size and shape. One can expect that the redox behavior will also change with the size of nm-particles. Knowledge in the latter field is still in an infant state. In this paper experiments will be discussed that shed some light on the redox behavior of nm-semiconductor particles, firstly as donors in the excited electronic state and secondly as electron acceptors. Transport of excess charge carriers through a chain of nm- size semiconductor particles will be briefly discussed since this latter process is important for some of the suggested device applications for nm- particles. Presently available experimental results concerning electron transfer with semiconducter nm-particles suffer from the fact that the detailed structure and chemical nature of the interface is not really known for these systems. The experimental systems are complicated and the measurements can suffer from systematic faults. Experimental results obtained at closely related systems can serve as guidelines, e.g. electron transfer measurements on covalently linked molecular donor-spacer-acceptor systems and on quantum well-barrier-quantum well systems. Progress in this field appears highly desirable, since very interesting practical applications have been suggested for systems prepared from nm-size semiconductor particles involving electron transfer reactions and electron transport. Some of these systems have shown promising features. One prominent example is an electrode prepared from nm-size anatase TiO2 colloidal particles. This electrode is prepared with nm-particles that retain to a large degree their individual properties but are glued together such that they can facilitate efficient transport of excess charge carriers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Brus, L.E. (1984) J. Chem. Phys. 80, 4403

    Article  CAS  Google Scholar 

  2. Nazeeruddin, M., Kay, A., Rodicio, I., Humphry-Baker, R., Muller, E., Liska, P., Vlachopolous, N., and Grätzel M. (1993) J. Am. Chem. Soc. 115, 6382

    Article  CAS  Google Scholar 

  3. Hagfeldt, A., Vlachopolous, N., and Grätzel, M. (1994) J. Electrochem. Soc. 141, L82

    Article  CAS  Google Scholar 

  4. Bello, J. M., Stokes, D. L., and Vo-Dinh, T. (1989) Anal. Chem. 61, 1779

    Article  CAS  Google Scholar 

  5. Chumanov, G., Sokolov, K., Gregory, B. W., and Cotton, Th. M. (1995) J. Phys. Chem. 99, 9466

    Article  CAS  Google Scholar 

  6. Colvin, V. L., Schlamp, M. C., and Alivisatos, A. P. (1994) Nature 370, 354

    Article  CAS  Google Scholar 

  7. Dabbousi, B. O., Bawendi, M. G., Onitsuka, O., Rubner, M. F. (1995) Appt Phys. Lett. 66, 1316

    Article  CAS  Google Scholar 

  8. Vogel, R, Pohl, K, and Weller, H. (1990) Chem. Phys. Lett. 174, 241

    Article  CAS  Google Scholar 

  9. Linsebigler, A. L., Lu, G., and Yates, J. T. (1995) Chem. Rev. 95, 735

    Article  CAS  Google Scholar 

  10. Kubo, R (1952) Phys. Rev. 86, 929

    Article  CAS  Google Scholar 

  11. Jortner, J. J. (1976) Chem. Phys. 64, 4860

    CAS  Google Scholar 

  12. Huang, K.; Rhys, A. (1950) Proc. R. Soc. Lond. A204, 406

    Article  CAS  Google Scholar 

  13. Price, P. J. (1981) Annals of Physics 133, 217

    Article  CAS  Google Scholar 

  14. Marcus, R. A. (1963) J. Phys. Chem. 67, 853

    Article  CAS  Google Scholar 

  15. Sakata, Y., Tsue, R, O’Neil, M. P., Wiederrecht, G. P., and Wasielewski, M. R (1994) J. Am. Ch,em. Soc. 116, 6904

    Article  CAS  Google Scholar 

  16. Willig, F. (1995) Surface Electron Transfer Processes, chapter 5, VCH, New York

    Google Scholar 

  17. Gadzuk, J. W. (1967) Surface Science 6, 133; ibid 159

    Article  CAS  Google Scholar 

  18. Trösken, B. and Willig, F. unpublished results

    Google Scholar 

  19. Briggs, J. S. and Herzenberg, A. (1971) J. Mol Physics 21, 865;

    Article  CAS  Google Scholar 

  20. Fidder, H., Terpstra, J., and Wiersma, D. A. (1991) J. Chem. Phys. 94, 6895

    Article  CAS  Google Scholar 

  21. Feldmann, J., Nunnenkamp, J., Peter, G., Göbel, E., Kuhl, J., Ploog, J., Dawson, P., Foxon, C. T. (1990) Phys. Rev. B42, 5819

    Google Scholar 

  22. Kasha, M., Rawls, R R., El-Bayoumi, M. A. (1965) Pure AppL Chem. 11, 371

    Article  CAS  Google Scholar 

  23. Norris, D. J., Sacra, A., Murray, C. B., and Bawendi, M. G. (1994) Phys. Rev. Lett. 72, 2612 and of Alivisatos

    Article  CAS  Google Scholar 

  24. Hoheisel, W., Colvin, V. L., Johnson, C. S., Alivisatos, A. P. (1994) J. Chem. Phys. 101, 8455

    Article  CAS  Google Scholar 

  25. Shank, C V, Schönlein, R. W., Mittlemann, D. M., and Shiang, J. J. (1993) Ultrafest Phenomena VIII, 438, Springer, Berlin

    Google Scholar 

  26. Hoyer, P., Eichberger, R and Weller, H. (1993) Ber. Bunsensges. Phys. Chem. 97, 630

    CAS  Google Scholar 

  27. Kavan, L., Stoto, T., and Grätzel, M. (1993) J. Phys. Chem. 97, 9493

    Article  CAS  Google Scholar 

  28. Jacobi, K, Zwicker, G., and Gutman, A. (1984) Surface Sci. 141, 109

    Article  CAS  Google Scholar 

  29. Kouwenhoven, L. P., van der Vaart, N. C., Johnson, A. T., Harmans, C. J., Williamson, J. G., and Staring, A. A. (1991) Advances in Solid State Physics, 329, Vieweg, Braunschweig

    Google Scholar 

  30. Pilerai, M.-P., unpublished result

    Google Scholar 

  31. Charlé, K-P., Frank, F., and Schulze, W. (1984) Ber. Bunsenges. Phys. Chem. 88, 350.

    Google Scholar 

  32. Mahrt, J. and Willig, F. unpublished results

    Google Scholar 

  33. Kietzmann, R., Willig, F., Weller, H., Vogel, R., Nath, D. N., Eichberger, R., Liska, P., and Lehnert, J. (1991) Mol. Cryst. Liqu. Cryst. 194, 169

    Article  CAS  Google Scholar 

  34. Schwarzburg, K and Willig, F. (1991) Appl. Phys. Lett. 58, 2520. There is a misprint in the caption to Fig.3 of this paper. It should read kes = 104 s-1.

    Article  CAS  Google Scholar 

  35. Könenkamp, R., Henninger, R, and Hoyer, P., (1993) J. Phys. Chem. 97, 7328

    Article  Google Scholar 

  36. Knödler, D., Dieterich, W., Lonsky, C., and Nitzan, A. (1995) J. Chem. Phys. 102, 465

    Article  Google Scholar 

  37. Willig, F., Charlé, K-P., and Van der Auweraer, M. (1986) Mol. Cryst. Liqu. Cryst. 137, 329

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Kluwer Academic Publishers

About this chapter

Cite this chapter

Willig, F., Schwarzburg, K., Trösken, B., Mahrt, J., Motte, L., Pileni, MP. (1996). nm-Semiconductor Particles and Molecular Aggregates as Redox Species. In: Pelizzetti, E. (eds) Fine Particles Science and Technology. NATO ASI Series, vol 12. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-0259-6_41

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-0259-6_41

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-4047-8

  • Online ISBN: 978-94-009-0259-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics