Modeling in Laser Materials Processing: Melting, Alloying, Cladding

  • A. Kar
  • J. Mazumder
Part of the NATO ASI Series book series (NSSE, volume 307)


With the advent of high power lasers, the laser technology has taken an important place in the areas of manufacturing and materials processing. To utilize this technology in the economical and efficient ways, a proper understanding of the phase changes occurred during laser processing is required. Both theoretical and experimental studies are required to achieve this goal. This paper presents several mathematical models for various types of laser processing. Most of the laser processing involves the melting, vaporization, and solidification of materials. Due to the inherent rapid cooling rate, novel microstructures with metastable phases are produced during laser processing. Laser cladding is a technique to coat a substrate with a thick layer of other materials to improve the surface properties of the substrate. If the cladding powder is a mixture of more than one type of materials, the resulting coating is usually found to have metastable phases with nonequilibrium compositions. The solidification rate, which affects the composition of the nonequilibrium alloys, is obtained by solving the energy conservation equations in the melt, solidified clad, and substrate regions. Also, the mass transfer equation is solved to determine the distribution of solute atoms in the liquid and solid regions. Finally, the model is used to obtain the nonequilibrium phase diagrams for Ni-Al, Ni-Hf, and Nb-Al systems. The partition coefficient is found to be an important parameter for this model, and for this reason, an expression for the nonequilibrium partition coefficient for the concentrated binary systems is also presented in this paper.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. Singh and J. Mazumder, Acta metall. 35, 1995 (1987).CrossRefGoogle Scholar
  2. 2.
    J. Mazumder and W. M. Steen, J. appi. Phys. 51, 941 (1980).ADSCrossRefGoogle Scholar
  3. 3.
    E. Cline and T. R. Anthony, J. appi. Phys. 48, 3895 (1977).ADSCrossRefGoogle Scholar
  4. 4.
    S. Kou, S. C. Hsu and R. Mehrabian, Metall, Trans. 12B, 33 (1981).CrossRefGoogle Scholar
  5. 5.
    M. F. Ashby and K. E. Easterling, Acta metal. 32, 1935 (1984).CrossRefGoogle Scholar
  6. 6.
    C. Chan, J. Mazumder and M. M. Chen, Metall. Trans. 15A, 2175 (1984).CrossRefGoogle Scholar
  7. 7.
    T. Chande and J. Mazumder, J. appi. Phys. 57, 2226 (1985).ADSCrossRefGoogle Scholar
  8. 8.
    J. C. Baker and J. W. Cahn, Solidification, pp. 23–58, Am. Soc. Metals, Metals Park, Ohio (1971).Google Scholar
  9. 9.
    W. J. Boettinger and J. H. Perepezko, Proc., Rapidly Solidified Crystalline Alloys, TMS-AIME, N.J. (1985).Google Scholar
  10. 10.
    W. J. Boettinger, S. R. Coriell and R. F. Sekerka, Mater. Sci. Engng 65, 27 (1984).CrossRefGoogle Scholar
  11. 11.
    B. H. Kear, B. C. Giessen and M. Ghen (editors) Rapidly Solidified Amorphous and Crystalline Alloys, Proc. M.R.S. Vol. 8, Boston, Mass. (1981).Google Scholar
  12. 12.
    L. J. Li and J. Mazumder, Laser Processing of Materials (edited by Mukherjee K. and J. Mazumder), pp. 35–50. Proc. Metal. Soc. AIME, Los Angeles, Calif. (1984).Google Scholar
  13. 13.
    A. Kar and J. Mazumder, J. appi. Phys. 61, 2645 (1987).ADSCrossRefGoogle Scholar
  14. 14.
    A. Kar and J. Mazumder, Acta Metall. 36, 701(1988).Google Scholar
  15. 15.
    A. Kar and J. Mazumder, Met. Trans. 20, 363(1989).CrossRefGoogle Scholar
  16. 16.
    E. Y. Yankov, J. A. Todd, and S. M. Copley, in Proc. Morris E. Fine Symp., P. K. Liaw, J. R. Weertman, H. L. Marcus, and J. S. Santner, eds., TMS, Warrendale, Pennsylvania, 1991, P. 29.Google Scholar
  17. 17.
    E. Y. Yankov, S. M. Copley, M. I. Yankov, and J. A. Todd, in Proc. Morris E. Fine Symp., P. K. Liaw, J. R. Weertman, H. L. Marcus, and J. S. Santner, eds., TMS, Warrendale, Pennsylvania, 1991, P. 33.Google Scholar
  18. 18.
    K. A. Jackson, Can J. Phys., 36, 683 (1958).ADSCrossRefGoogle Scholar
  19. 19.
    V. T. Borisov, Soviet Phys. Dokl. 7, 50 (1962).ADSGoogle Scholar
  20. 20.
    J. C. Baker and J. W. Cahn, Acta Metall., 17, 575 (1969).CrossRefGoogle Scholar
  21. 21.
    A. A. Chernov, Growth of Crystals (Consultants Bureau, New York, 1962), 3, p. 35.Google Scholar
  22. 22.
    J. W. Cahn, S. R. Coriell, and W. J. Boettinger, in Laser and Electron Beam Processing of Materials, Ref. 7,89.CrossRefGoogle Scholar
  23. 23.
    K. A. Jackson, G. H. Silmer, and H. J. Leamy, in Laser and Electron Beam Processing of Materials, C. W. White and P. S. Peercy, eds., Academic Press, New York, 1980, p. 104.CrossRefGoogle Scholar
  24. 24.
    R. F. Wood, J. C. Wang, G. E. Giles, and J. R. Kirkpatrick, in Laser and Electron Beam Processing of Materials, C. W. White and P. S. Peercy, eds., Academic Press, New York, 1980, p. 37.CrossRefGoogle Scholar
  25. 25.
    R. F. Wood, Appi. Phys. Lett. 37, 302 (1980).ADSCrossRefGoogle Scholar
  26. 26.
    R. F. Wood, and G. E. Giles, Phys. Ref. B23, 2923 (1981).ADSCrossRefGoogle Scholar
  27. 27.
    R. F. Wood, J. R. Kirkpatrick, and G. E. Giles, Phys. Rev. B23, 5555 (1981).ADSCrossRefGoogle Scholar
  28. 28.
    R. F. Wood, Phys. Rev., B25, 2786 (1982).ADSCrossRefGoogle Scholar
  29. 29.
    M. J. Aziz, J. Appi. Phys., 53, 1158 (1982).ADSCrossRefGoogle Scholar
  30. 30.
    G. H. Gilmer and P. Bennema, J. Appi. Phys., 43, 1347 (1972).ADSCrossRefGoogle Scholar
  31. 31.
    G. H. Gilmer and K. A. Jackson, in Crystal Growth and Materials, E. Kaldis and H. J. Scheel, eds., North-Holland, New York, 1977, p. 80.Google Scholar
  32. 32.
    G. H. Gilmer, in Materials Research Society Symposium, Elsevier, New York, 1983, Vol. 13, p. 249.CrossRefGoogle Scholar
  33. 33.
    G. H. Gilmer, Mat. Sci. Engrg., 65, 15 (1984).ADSCrossRefGoogle Scholar
  34. 34.
    M. J. Aziz, Appi. Phys. Lett., 43, 552 (1983).ADSCrossRefGoogle Scholar
  35. 35.
    M. J. Aziz, in Science and Technology of Rapidly Quenched Alloys, M. Tenhover, W. L. Johnson, and L. E. Tanner, eds., Materials Research Society, Pittsburgh, Pennsylvania, 1987, p. 25.Google Scholar
  36. 36.
    R. Trivedi and W. Kurz, Metall. Trans. A. 21A, 1311 (1990).CrossRefGoogle Scholar
  37. 37.
    P. Baeri, G. Foti, J. M. Poate, S. U. Campisano, and A. G. Cullis, Appi. Phys. Lett. 38, 800 (1981).ADSCrossRefGoogle Scholar
  38. 38.
    C. W. White, S. R. Wilson, B. R. Appleton, and F. W. Young, Jr., J. Appi. Phys. 51, 738 (1980).ADSCrossRefGoogle Scholar
  39. 39.
    C. W. White, B. R. Appleton, B. Stritzker, D. M. Zehner, and S. R. Wilson, in Laser and Electron-Beam Solid Interactions and Materials Processing, J. F. Gibbons, L. D. Hess, and T. W. Sigmon, eds., North Holland, New York, 1981, p. 59.Google Scholar
  40. 40.
    M. J. Aziz, J. Y. Tsao, M. O. Thompson, P. S. Peercy, and C. W. White, Phys. Rev. Lett. 56, 2489 (1986).ADSCrossRefGoogle Scholar
  41. 41.
    P. Baeri, J. M. Poate, S. U. Campisano, G. Foti, E. Rimini, and A. G. Cullis, Appi. Phys. Lett., 37, 912 (1980).ADSCrossRefGoogle Scholar
  42. 42.
    M. Cohen and M. C. Flemings, in Rapidly Solidified Crystalline Alloys, S. K. Das, B. H. Kear, and C. M. Adam, eds., Metall. Soc., Warrendale, Pennsylvania, 1985, p. 3.Google Scholar

Copyright information

© Kluwer Academic Publishers 1996

Authors and Affiliations

  • A. Kar
    • 1
  • J. Mazumder
    • 2
  1. 1.Center for Research and Education in Optics and Lasers (CREOL) Mechanical and Aerospace engineering DepartmentUniversity of Central FloridaOrlandoUSA
  2. 2.Center for Laser-Aided Materials Processing (CLAMP) Mechanical and Industrial Engineering DepartmentUniversity of Illinois at Urbana-ChampaignUrbanaUSA

Personalised recommendations