Skip to main content

Interior and Surface Dynamics of Terrestrial Bodies and their Implications for the Habitability

  • Chapter
  • First Online:
Habitability of Other Planets and Satellites

Part of the book series: Cellular Origin, Life in Extreme Habitats and Astrobiology ((COLE,volume 28))

Abstract

For the Earth, it is speculated that plate tectonics plays an important role for its long-term habitability at the surface. This convection mechanism transports efficiently surface material by subduction into the planetary interior and allows life to grow and survive due to recycling of nutrients, the stabilization of the climate and the cooling of the deep interior. The latter further helps to maintain the magnetic field that protects the atmosphere from erosion and life from harmful radiation.

On icy moons in contrast, the habitable environment would be restricted to a possible subsurface ocean; a stabile atmosphere is not required. To sustain the subsurface ocean and gain energy for possible life, volcanic activity in the underlying silicate mantle but also tidal heating play an important role. The volcanic activity, however, may be also related to plate tectonics in the silicate mantle, but its existence is only speculative. In fact, plate tectonics on terrestrial bodies (i.e. a planet or moon with an iron core, a silicate mantle and a crust on top) is uncommon, and the Earth is the only planet that is known to operate in this convective regime. Other terrestrial bodies (e.g. Mars and Venus) operate today in the so-called stagnant lid regime where convection takes place underneath an upper stagnant layer – in their early evolution, however, plate tectonics may have been active. Alternatively, Venus may have experienced a convective resurfacing mechanism (as it has been proposed for the moon Enceladus) or a strong magmatic resurfacing (which is comparable to the resurfacing of the moon Io).

Even though planets and moons differ in many aspects, they show a lot of similarities. Understanding the diversity and the common features of terrestrial bodies (i.e. planets and moons) in the Solar System is a main challenge in geodynamics and astrophysics. One important question is to understand how plate tectonics and other resurfacing mechanisms work and why no (present-day) plate tectonics exists on any other terrestrial body in our Solar System but on Earth.

In this chapter we review some main characteristics of selected terrestrial bodies related to their (non-)habitability. In particular, we show how mantle convection simulations can give some answers to the question about the occurrence of plate tectonics. The extrapolations of plate tectonic studies to larger planets (like several exoplanets that have been detected in the past years) are, however, controversially discussed in the literature. Prognoses about plate tectonics on large terrestrial exoplanets strongly depend not only on the physics in the interior but also on the initial thermal state of the planets after accretion and differentiation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anderson BJ, Acuña MH, Korth H, Slavin JA, Uno H, Johnson CL, Purucker ME, Solomon SC, Raines JM, Zurbuchen TH, Gloeckler G, McNutt RL Jr (2010) The magnetic field of mercury. Space Sci Rev 152:307.339

    Article  CAS  Google Scholar 

  • Armann M, Tackley PJ (2012) Simulating the thermo-chemical magmatic and tectonic evolution of Venus’ mantle and lithosphere 1. Two-dimensional models J Geophys Res 117:E12003. doi:10.1029/2012JE004231

    Article  CAS  Google Scholar 

  • Arndt NT, Nisbet EG (2012) Processes on the young earth and the habitats of early life. Annu Rev Earth Planet Sci 40:521–549

    Article  CAS  Google Scholar 

  • Baker VR, Strom RG, Gulick VC, Kargel JS, Komatsu G, Kale VS (1991) Ancient oceans, ice sheets and the hydrological cycle on Mars. Nature 352:589–594

    Article  Google Scholar 

  • Barr AC (2008) Mobile lid convection beneath Enceladus’ south polar terrain. J Geophys Res 113(E07009):1–14

    Google Scholar 

  • Basilevsky AT, Head JW III (1998) The geologic history of Venus: a stratigraphic view. J Geophys Res 103:8531–8544

    Article  Google Scholar 

  • Benz W, Slattery WL, Cameron AGW (1988) Collisional stripping of Mercury’s mantle. Icarus 74(3):516–528

    Article  CAS  Google Scholar 

  • Berner RA (1999) A new look at the long-term carbon cycle. Geol Today 9(11):1–6

    Google Scholar 

  • Blank JG, Miller GH, Ahrens MJ, Winans RE (2001) Experimental shock chemistry of aqueous amino acid solutions and the cometary delivery of prebiotic compounds. Orig Life Evol Biosph 31:15–51

    Article  PubMed  CAS  Google Scholar 

  • Breuer D, Spohn T (2003) Early plate tectonics versus single-plate tectonics on Mars: evidence from magnetic field history and crust evolution. J Geophys Res 108(E7):5072

    Article  Google Scholar 

  • Breuer D, Labrosse S, Spohn T (2010) Thermal evolution and magnetic field generation in terrestrial planets and satellites. Space Sci Rev 152(1–4):449–500

    Article  CAS  Google Scholar 

  • Buscombe W (1952) Planetary atmospheres. Astron Soc Pac Leafl 6(277):213–220

    Google Scholar 

  • Byerlee J (1978) Friction of rocks. Pure Appl Geophys 116:615–626

    Article  Google Scholar 

  • Cameron AGW (1985) The partial volatilization of Mercury. Icarus 64(2):285–294

    Article  CAS  Google Scholar 

  • Canup RM, Asphaug E (2001) Origin of the moon in a giant impact near the end of the Earth’s formation. Nature 412:708–712

    Article  PubMed  CAS  Google Scholar 

  • Carr MH, McEwen AS, Howard KA, Chuang FC, Thomas P, Schuster P, Oberst J, Neukum G, Schubert G, The Galileo Imaging Team (1998) Mountains and calderas on Io: possible implications for lithosphere structure and magma generation. Icarus 135:146–165

    Article  Google Scholar 

  • Christensen UR, Wicht J (2008) Models of magnetic field generation in partly stable planetary cores: applications to Mercury and Saturn. Icarus 196:16–34

    Article  Google Scholar 

  • Condie KC (1998) Episodic continental growth and supercontinents: a mantle avalanche connection? Earth Planet Sci Lett 163(1–4):97–108

    Article  CAS  Google Scholar 

  • Connerney JEP, Acuna MH, Wasilewski PJ, Ness NF, Rème H, Mazelle C, Vignes D, Lin RP, Mitchell DL, Cloutier PA (1999) Magnetic lineations in the ancient crust of Mars. Science 284(5415):794–798

    Article  PubMed  CAS  Google Scholar 

  • Cooper CM, Lenardic A, Moresi L (2006) Effects of continental insulation and the partitioning of heat producing elements on the Earth’s heat loss. Geophys Res Lett 33(L13313):1–5

    Google Scholar 

  • Craddock RA, Howard AD (2002) The case for rainfall on a warm, wet early Mars. J Geophys Res 107(E11):5111

    Article  Google Scholar 

  • Crowley JW, O’Connell RJ (2012) An analytic model of convection in a system with layered viscosity and plates. Geophys J Int 188:61–78

    Article  Google Scholar 

  • Debaille V, Brandon AD, O’Neill C, Yin Q-Z, Jacobsen B (2009) Early martian mantle overturn inferred from isotopic composition of nakhlite meteorites. Nat Geosci 2:548–552

    Article  CAS  Google Scholar 

  • Dehant V, Lammer H, Kulikov YN, Grießmeier J-M, Breuer D, Verhoeven O, Karatekin Ö, Van Hoolst T, Korablev O, Lognonné P (2007) Planetary magnetic dynamo effect on atmospheric protection of early earth and mars. In: Fishbaugh KE, Lognonné P, Raulin F, Des Marais DJ (eds) Geology and habitability of terrestrial planets, Space sciences series of ISSI 24. New York, Springer, pp 279–300

    Chapter  Google Scholar 

  • Dietz RS (1961) Continent and ocean basin evolution by spreading of the sea floor. Nature 190:854–857

    Article  Google Scholar 

  • Ehlmann BL, Mustard JF, Murchie SL, Bibring J-P, Meunier A, Fraeman AA, Langevin Y (2011) Subsurface water and clay mineral formation during the early history of Mars. Nat Rev 479:53–60

    CAS  Google Scholar 

  • Elkins-Tanton LT, Seager S (2008) Coreless terrestrial exoplanets. Astrophys J 688:628–635

    Article  CAS  Google Scholar 

  • Farmer JD, Des Marais DJ (1999) Exploring for a record of ancient Martian life. J Geophys Res 104(E11):26,977–26,995

    Article  Google Scholar 

  • Foley BJ, Bercovici D, Landuyt W (2012) The conditions for plate tectonics on super-earths: inferences from convection models with damage. Earth Planet Sci Lett 331–332:281–290

    Article  CAS  Google Scholar 

  • Frey HV (2006) Impact constraints on the age and origin of the lowlands of Mars. Geophys Res Lett 33:L08S02

    Article  Google Scholar 

  • Gaidos E, Conrad CP, Manga M, Hernlund J (2010) Thermodynamic limits on magnetodynamos in rocky exoplanets. Astrophys J 718:596–609

    Article  CAS  Google Scholar 

  • Garrick-Bethell I, Weiss BP, Shuster DL, Buz J (2009) Early lunar magnetism. Science 323(5912):356–359

    Article  PubMed  CAS  Google Scholar 

  • Golabek GJ, Keller T, Gerya TV, Zhu G, Tackley PJ, Connolly JAD (2011) Origin of the martian dichotomy and Tharsis from a giant impact causing massive magmatism. Icarus 215:346–357

    Article  Google Scholar 

  • Gold T (1992) The deep, hot biosphere. Proc Natl Acad Sci USA Microbiology 89:6,045–6,049

    Google Scholar 

  • Grand SP (2002) Mantle shear-wave tomography and the fate of subducted slabs. Philos Trans R Soc Lond A 360:2475–2491

    Article  Google Scholar 

  • Grott M, Sohl F, Hussmann H (2007) Degree-one convection and the origin of Enceladus’ dichotomy. Icarus 191:203–210

    Article  Google Scholar 

  • Haberle RM, McKay CP, Schaeffer J, Cabrol NA, Grin EA, Zent AP, Quinn R (2001) On the possibility of liquid water on present-day Mars. J Geophys Res 106(El0):23,317–23,326

    Google Scholar 

  • Haghighipoura N (2011) Super-Earths: a new class of planetary bodies. Contemp Phys 52(5):403–438

    Article  Google Scholar 

  • Hand KP, McKay CP, Pilcher CB (2010) Spectroscopic and spectrometric differentiation between abiotic and biogenic material on icy worlds. Galileos Medicean Moons: their impact on 400 years of discovery. In: Proceedings of the international astronomical union symposium 269, Padova, 2010

    Google Scholar 

  • Hansen VL, López I (2010) Venus records a rich early history. Geology 38(4):311–314

    Article  Google Scholar 

  • Hartmann WK, Davis DR (1975) Satellite-sized planetesimals and lunar origin. Icarus 24:504–515

    Article  Google Scholar 

  • Hauck SA II, Aurnou JM, Dombard AJ (2006) Sulfur’s impact on core evolution and magnetic field generation on Ganymede. J Geophys Res 111:E09008

    Article  CAS  Google Scholar 

  • Head JW III, Hiesinger H, Ivanov MA, Kreslavsky MA, Pratt S, Thomson BJ (1999) Possible ancient oceans on mars: evidence from mars orbiter laser altimeter data. Science 286(5447):2,134–2,137

    Google Scholar 

  • Hevelius J (1647) Selenographia sive lunae descriptio, historical map, Danzig

    Google Scholar 

  • Holmes A (1944) Principles of physical geology. Nelson, London

    Google Scholar 

  • Hood LL, Artemieva NA (2008) Antipodal effects of lunar basin-forming impacts: initial 3D simulations and comparisons with observations. Icarus 193:485–502

    Article  Google Scholar 

  • Ingersoll AP (1969) The runaway greenhouse: a history of water on Venus. J Atmos Sci 26:1191–1198

    Article  CAS  Google Scholar 

  • Karato S-I (2008) Deformation of earth materials: an introduction to the rheology of solid earth. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Karato S-I (2011) Rheological structure of the mantle of a super-earth: some insights from mineral physics. Icarus 212(1):14–23

    Article  CAS  Google Scholar 

  • Karato S-I, Wu P (1993) Rheology of the upper mantle: a synthesis. Science 260:771–778

    Article  PubMed  CAS  Google Scholar 

  • Kasting JF (1988) Runaway and moist greenhouse atmospheres and the evolution of earth and Venus. Icarus 74:472–494

    Article  PubMed  CAS  Google Scholar 

  • Kasting JF, Toon OB, Pollack JB (1988) How climate evolved on the terrestrial planets. Sci Am 256:90–97

    Article  PubMed  CAS  Google Scholar 

  • Kasting JF, Whitmire DP, Reynolds RT (1993) Habitable zones around main sequence stars. Icarus 101:108–128

    Article  PubMed  CAS  Google Scholar 

  • Kawai K, Tsuchiya T (2009) Temperature profile in the lowermost mantle from seismological and mineral physics joint modelling. Proc Natl Acad Sci USA 106(52):22,119–22,123

    Article  Google Scholar 

  • Keller T, Tackley PJ (2009) Towards self-consistent modeling of the Martian dichotomy: the influence of one-ridge convection on crustal thickness distribution. Icarus 202:429–443

    Article  CAS  Google Scholar 

  • Korenaga J (2010) On the likelihood of plate tectonics on super-earths: does size matter? Astrophys J 725:L43–L46

    Article  Google Scholar 

  • Lammer H, Bredehöft JH, Coustenis A, Khodachenko ML, Kaltenegger L, Grasset O, Prieur D, Raulin F, Ehrenfreund P, Yamauchi M, Wahlund J-E, Grießmeier J-M, Stangl G, Cockell CS, Kulikov YN, Grenfell JL, Rauer H (2009) What makes a planet habitable? Astron Astrophys Rev 17:181–249

    Article  Google Scholar 

  • Lammer H, Selsis F, Chassefière E, Breuer D, Grießmeier J-M, Kulikov YN, Erkaev NV, Khodachenko ML, Biernat HK, Leblanc F, Kallio E, Lundin R, Westall F, Bauer SJ, Beichman C, Danchi W, Eiroa C, Fridlund M, Gröller H, Hanslmeier A, Hausleitner W, Henning T, Herbst T, Kaltenegger L, Léger A, Leitzinger M, Lichtenegger HIM, Liseau R, Lunine J, Motschmann U, Odert P, Paresce F, Parnell J, Penny A, Quirrenbach A, Rauer H, Röttgering H, Schneider J, Spohn T, Stadelmann A, Stangl G, Stam D, Tinetti G, White GJ (2010) Geophysical and atmospheric evolution of habitable planets. Astrobiology 10(1):45–68

    Article  PubMed  Google Scholar 

  • Lammer H, Chassefiere E, Karatekin O, Morschhauser A, Niles PB, Mousis O, Odert P, Möstl UV, Breuer D, Dehant V, Grott M, Gröller H, Hauber E, Pham LBS (2013) Outgassing history and escape of the Martian atmosphere and water inventory. Space Sci Rev 174(1–4):113–154

    Article  CAS  Google Scholar 

  • Landuyt W, Bercovici D (2009) Variations in planetary convection via the effect of climate on damage. Earth Planet Sci Lett 277:29–37

    Article  CAS  Google Scholar 

  • Lawrence DJ (2011) Planetary science: water on the moon. Nat Geosci 4:586–588

    Article  CAS  Google Scholar 

  • Lenardic A, Nimmo F, Moresi L (2004) Growth of the hemispheric dichotomy and the cessation of plate tectonics on mars. J Geophys Res 109(E02003)

    Google Scholar 

  • Lenardic A, Jellinek AM, Moresi L-N (2008) A climate induced transition in the tectonic style of a terrestrial planet. Earth Planet Sci Lett 271:34–42

    Article  CAS  Google Scholar 

  • Lewis JS (1973) Chemistry of the planets. Annu Rev Phys Chem 24:339–351

    Article  CAS  Google Scholar 

  • Lodders K, Fegley B Jr (1998) The planetary scientist’s companion. Oxford University Press, New York

    Google Scholar 

  • LOLA (2012) Topographic LOLA map of the Moon. Image credit: NASA, GSFC and MIT. Retrieved 16 Nov 2012 from http://www.nasa.gov/mission_pages/grail/news/telecon20111228_prt.htm

  • Lovelock JE, Margulis L (1974) Atmospheric homeostasis by and for the biosphere: the gaia hypothesis. Tellus 26(1–2):2–10

    CAS  Google Scholar 

  • Luhmann JG, Russell CT (1997) Venus: magnetic field and magnetosphere. In: Shirley JH, Fainbridge RW (eds) Encyclopedia of planetary sciences. Chapman and Hall, New York, pp 905–907

    Chapter  Google Scholar 

  • Mantovani R (1889) Les fractures de l’écorce terrestre et la théorie de Laplace. Bull Soc Sc et Arts Réunion:41–53

    Google Scholar 

  • Martin W, Russell MJ (2003) On the origins of cells: a hypothesis for the evolutionary transitions from abiotic geochemistry to chemoautotrophic prokaryotes, and from prokaryotes to nucleated cells. Philos Trans R Soc Lond B 358:59–85

    Article  CAS  Google Scholar 

  • Mayor M, Queloz D (1995) A Jupiter-mass companion to a solar-type star. Nature 378:355–359

    Article  CAS  Google Scholar 

  • Mehl L, Hirth G (2008) Plagioclase preferred orientation in layered mylonites: evaluation of flow laws for the lower crust. J Geophys Res 113:B05202

    Article  Google Scholar 

  • Moresi L, Solomatov V (1998) Mantle convection with a brittle lithosphere: thoughts on the global tectonics styles of the Earth and Venus. Geophys J Int 133:669–682

    Article  Google Scholar 

  • Morishima R, Watanabe S-I (2001) Two types of co-accretion scenarios for the origin of the Moon. Earth Planet Space 53:213–231

    CAS  Google Scholar 

  • Mueller N, Helbert J, Hashimoto GL, Tsang CCC, Erard S, Piccioni G, Drossart P (2008) Venus surface thermal emission at 1 μm in VIRTIS imaging observations: evidence for variation of crust and mantle differentiation conditions. J Geophys Res 113:E00B17

    Article  Google Scholar 

  • Mumford NW (1909) Intelligence on Mars of Venus. Pop Astron 17:497–504

    Google Scholar 

  • Mumma MJ, Charnley SB (2011) The chemical composition of comets – emerging taxonomies and natal heritage. Annu Rev Astron Astrophys 49:471–524

    Article  CAS  Google Scholar 

  • NASA (2012) Topographic MOLA map of Mars. Compiled by Goddard Spaceflight Center (NASA/JPL). Retrieved 16 Nov 2012 from http://photojournal.jpl.nasa.gov/catalog/PIA02035

  • Nimmo F, Stevenson D (2000) Influence of early plate tectonics on the thermal evolution and magnetic field of Mars. J Geophys Res 105(E5):11969–11979

    Article  Google Scholar 

  • Nimmo F, Tanaka K (2005) Early crustal evolution of Mars. Annu Rev Earth Planet Sci 33:133–161

    Article  CAS  Google Scholar 

  • Noack L, Tosi N (2013) High-performance modelling in geodynamics. In: Rueckemann C-P (ed) Integrated information and computing systems for natural, spatial, and social sciences. Information Science Reference. IGI Global, Hershey, pp 324–352. doi:10.4018/978-1-4666-2190-9

    Google Scholar 

  • Noack L, Breuer D, Spohn T (2012) Coupling the atmosphere with the interior dynamics: implications for the resurfacing of Venus. Icarus 217:484–498

    Article  CAS  Google Scholar 

  • O’Neill C, Lenardic A (2007) Geological consequences of super-sized Earths. Geophys Res Lett 34:L19204

    Article  Google Scholar 

  • O’Neill C, Nimmo F (2010) The role of episodic overturn in generating the surface geology and heat flow on Enceladus. Nat Geosci 3:88–91

    Article  CAS  Google Scholar 

  • O’Neill C, Lenardic A, Moresi L, Torsvik TH, Lee C-TA (2007) Episodic Precambrian subduction. Earth Planet Sci Lett 262:552–562

    Article  CAS  Google Scholar 

  • Ortelius A (1570) Theatrum orbis terrarium. Atlas, Antverpie, Apud Aegid, Coppenium Diesth. Online available via the National Library of Australia, http://www.nla.gov.au/maps/cartographic-links, 26 June 2012

  • Parkinson CD, Liang M-C, Hartman H, Hansen CJ, Tinetti G, Meadows V, Kirschvink JL, Yung YL (2007) Enceladus: Cassini observations and implications for the search for life. Astron Astrophys 463:353–357

    Article  CAS  Google Scholar 

  • Parnell J (2004) Plate tectonics, surface mineralogy, and the early evolution of life. Int J Astrobiol 3(2):131–137

    Article  Google Scholar 

  • Peplowski PN, Evans LG, Hauck SA II, McCoy TJ, Boynton WV, Gillis-Davis JJ, Ebel DS, Goldsten JO, Hamara DK, Lawrence DJ, McNutt RL Jr, Nittler LR, Solomon SC, Rhodes EA, Sprague AL, Starr RD, Stockstill-Cahill KR (2011) Radioactive elements on Mercury’s surface from MESSENGER: implications for the planet’s formation and evolution. Science 333(6051):1850–1852

    Article  PubMed  CAS  Google Scholar 

  • Phillips RJ, Bullock MA, Hauck SA II (2001) Climate and interior coupled evolution on Venus. Geophys Res Lett 28(9):1779–1782

    Article  CAS  Google Scholar 

  • Pickering WH (1907) The place of origin of the moon – the volcanic problems. Pop Astron 15:274–287

    Google Scholar 

  • Pickering WH (1926) Report on Mars, no. 37. Pop Astron 34:482–491

    Google Scholar 

  • Platz T, Michael G (2011) Eruption history of the Elysium volcanic province, Mars. Earth Planet Sci Lett 312(1–2):140–151

    Article  CAS  Google Scholar 

  • Pollack JB, Toon OB, Boese R (1980) Greenhouse models of Venus’ high surface temperature, as constrained by Pioneer Venus measurements. Geophys Res Lett 85(A13):8223–8231

    Article  Google Scholar 

  • Poulet F, Bibring J-P, Mustard JF, Gendrin A, Mangold N, Langevin Y, Arvidson RE, Gondet B, Gomez C, The Omega Team (2005) Phyllosilicates on Mars and implications for early martian climate. Nature 438:623–627

    Article  PubMed  CAS  Google Scholar 

  • Queloz D, Bouchy F, Moutou C, Hatzes A, Hébrard G, Alonso R, Auvergne M, Baglin A, Barbieri M, Barge P, Benz W, Bordé P, Deeg HJ, Deleuil M, Dvorak R, Erikson A, Ferraz Mello S, Fridlund M, Gandolfi D, Gillon M, Guenther E, Guillot T, Jorda L, Hartmann M, Lammer H, Léger A, Llebaria A, Lovis C, Magain P, Mayor M, Mazeh T, Ollivier M, Pätzold M, Pepe F, Rauer H, Rouan D, Schneider J, Segransan D, Udry S, Wuchterl G (2009) The CoRoT-7 planetary system: two orbiting super-earths. Astron Astrophys 506(1):303–319

    Article  Google Scholar 

  • Reese CC, Solomatov VS, Moresi L-N (1999) Non-Newtonian stagnant lid convection and magmatic resurfacing on Venus. Icarus 139:67–80

    Article  Google Scholar 

  • Regenauer-Lieb K, Yuen DA, Branlund J (2001) The initiation of subduction: criticality by addition of water? Science 294:578–580

    Article  PubMed  CAS  Google Scholar 

  • Reynolds RT, Squyres SW, Colburn DS, McKay CP (1983) On the habitability of Europa. Icarus 56(2):246–254

    Article  Google Scholar 

  • Roberts JH, Zhong S (2006) Degree-1 convection in the Martian mantle and the origin of the hemispheric dichotomy. J Geophys Res 111(E06013):1–18

    Google Scholar 

  • Rolf T, Tackley PJ (2011) Focussing of stress by continents in 3D spherical mantle convection with self‐consistent plate tectonics. Geophys Res Lett 38(L18301):1–5

    Google Scholar 

  • Rosing MT, Bird DK, Sleep NH, Glassley W, Albar F (2006) The rise of continents – an essay on the geologic consequences of photosynthesis. Palaeogeogr Palaeoclimatol Palaeoecol 232:99–113

    Article  Google Scholar 

  • Ruiz J (2007) The heat flow during the formation of ribbon terrains on Venus. Planet Space Sci 55:2063–2070

    Article  Google Scholar 

  • Rusell CT (1981) The magnetic fields of Mercury, Venus and Mars. Adv Space Res 1:3–20

    Article  Google Scholar 

  • Schaber GG, Strom RG, Moore HJ, Soderblom LA, Kirk RL, Chadwick DJ, Dawson DD, Gaddis LR, Boyce JM, Russell J (1992) Geology and distribution of impact craters on Venus: what are they telling us? J Geophys Res 97(E8):13,257–13,301

    Article  Google Scholar 

  • Schiaparelli G (1893) Il pianeta Marte. Map online available. University of Cambridge, Institute of Astronomy Library, Retrieved 27 May 2012, URL: http://www.dspace.cam.ac.uk/handle/1810/223796

  • Schubert G, Zhang K, Kivelson MG, Anderson JD (1996) The magnetic field and internal structure of Ganymede. Nature 384:544–545

    Article  CAS  Google Scholar 

  • Schubert G, Solomatov S, Tackley PJ, Turcotte DL (1997) Mantle convection and the thermal evolution of Venus. In: Bougher SW, Hunten DM, Philips RJ (eds) Venus II. Geology, geophysics, atmosphere, and solar wind environment. University of Arizona Press, Tucson, pp 1,245–1,288

    Google Scholar 

  • Schulze-Makuch D, Irwin LN (2002) Reassessing the possibility of life on Venus: proposal for an astrobiology mission. Astrobiology 2(2):197–202

    Article  PubMed  CAS  Google Scholar 

  • Selsis F, Kaltenegger L, Paillet J (2008) Terrestrial exoplanets: diversity, habitability and characterization. Phys Scr 2008:T130

    Google Scholar 

  • Sleep NH (1994) Martian plate tectonics. J Geophys Res 99(E3):5639–5655

    Article  Google Scholar 

  • Smith PH, Tamppari LK, Arvidson RE, Bass D, Blaney D, Boynton WV, Carswell A, Catling DC, Clark BC, Duck T, DeJong E, Fisher D, Goetz W, Gunnlaugsson HP, Hecht MH, Hipkin V, Hoffman J, Hviid SF, Keller HU, Kounaves SP, Lange CF, Lemmon MT, Madsen MB, Markiewicz WJ, Marshall J, McKay CP, Mellon MT, Ming DW, Morris RV, Pike WT, Renno N, Staufer U, Stoker C, Taylor P, Whiteway JA, Zent AP (2009) H2O at the phoenix landing site. Science 325:58–61

    PubMed  CAS  Google Scholar 

  • Smith DE, Zuber MT, Phillips RJ, Solomon SC, Hauck SA II, Lemoine FG, Mazarico E, Neumann GA, Peale SJ, Margot J-L, Johnson CL, Torrence MH, Perry ME, Rowlands DD, Goossens S, Head JW, Taylor AH (2012) Gravity field and internal structure of mercury from MESSENGER. Science 336(6078):214–217

    Article  PubMed  CAS  Google Scholar 

  • Smrekar SE, Stofan ER, Mueller N, Treiman A, Elkins-Tanton L, Helbert J, Piccioni G, Drossart P (2010) Recent hot-spot volcanism on Venus from VIRTIS emissivity data. Science 328(5978):605–608

    Article  PubMed  CAS  Google Scholar 

  • Sohl F, Spohn T, Breuer D, Nagel K (2002) Implications from Galileo observations on the interior structure and chemistry of the Galilean satellites. Icarus 157:104–119

    Article  CAS  Google Scholar 

  • Squyres SW, Reynolds RT, Cassen PM, Peale SJ (1983) The evolution of Enceladus. Icarus 53:319–331

    Article  CAS  Google Scholar 

  • Stamenkovic V, Breuer D, Spohn T (2011) Thermal and transport properties of mantle rock at high pressure: applications to super-earths. Icarus 216:572–596

    Article  CAS  Google Scholar 

  • Stamenkovic V, Noack L, Breuer D, Spohn T (2012) The influence of pressure-dependent viscosity on the thermal evolution of super-Earths. Astrophys J 748:41, 22 pp

    Article  Google Scholar 

  • Stanley S, Bloxham J, Hutchinson WE, Zuber MT (2005) Thin shell dynamo models consistent with Mercury’s weak observed magnetic field. Earth Planet Sci Lett 234:27–38

    Article  CAS  Google Scholar 

  • Stein C, Schmalz J, Hansen U (2004) The effect of rheological parameters on plate behavior in a self-consistent model of mantle convection. Phys Earth Planet Inter 142:225–255

    Article  Google Scholar 

  • Stein C, Finnenkötter A, Lowman JP, Hansen U (2011) The pressure‐weakening effect in super‐earths: consequences of a decrease in lower mantle viscosity on surface dynamics. Geophys Res Lett 38:L21201

    Article  CAS  Google Scholar 

  • Steinbach V, Yuen DA, Zhao WL (1993) Instabilities from phase transitions and the timescales of mantle thermal evolution. Geophys Res Lett 20:1119–1122

    Article  Google Scholar 

  • Stevenson DJ (2003) Planetary magnetic fields. Earth Planet Sci Lett Front 208:1–11

    Article  CAS  Google Scholar 

  • Suess E (1885) Das Antlitz der Erde (The face of Earth, in German). Vol. 1 of 3, F. Tempsky, Prag

    Google Scholar 

  • Sundquist ET (1993) The global carbon dioxide budget. Sci New Ser 259(5097):934–941

    CAS  Google Scholar 

  • Tachinami C, Senshu H, Ida S (2011) Thermal evolution and lifetime of intrinsic magnetic fields of super-earths in habitable zones. Astrophys J 726:70, 18 pp

    Article  CAS  Google Scholar 

  • Tackley PJ (1998) Self-consistent generation of tectonic plates in three-dimensional mantle convection simulations. Earth Planet Sci Lett 157:9–22

    Article  CAS  Google Scholar 

  • Taylor FB (1910) Bearing of the tertiary mountain belt on the origin of the earth’s plan. Geol Soc Am Bull 21(2):179–226

    Google Scholar 

  • Taylor F, Grinspoon D (2009) Climate evolution of Venus. J Geophys Res 114:E00B40

    Article  CAS  Google Scholar 

  • Toulmin P, Baird AK, Clark BC, Keil K, Rose HJJR, Christian RP, Evans PH, Kelliher WC (1977) Geochemical and mineralogical interpretation of’ the Viking inorganic chemical results. J Geophys Res 82(28):4625–4634

    Article  CAS  Google Scholar 

  • Turcotte DL (1993) An episodic hypothesis for venusian tectonics. J Geophys Res 98(E9):17061–17068

    Article  Google Scholar 

  • USGS (2012) Thermo-tectonic age map compiled by the U.S. Geological Survey. Retrieved 16 Nov 2012 from http://earthquake.usgs.gov/research/structure/crust/maps.php

  • Valencia D, O’Connell RJ, Sasselov DD (2006) Internal structure of massive terrestrial planets. Icarus 181:545–554

    Article  Google Scholar 

  • Valencia D, O’Connell RJ, Sasselov DD (2007) Inevitability of plate tectonics on super-earths. Astrophys J Let 670(1):45–48

    Article  Google Scholar 

  • van Heck HJ, Tackley PJ (2011) Plate tectonics on super-earths: equally or more likely than on earth. Earth Planet Sci Lett 310:252–261

    Article  CAS  Google Scholar 

  • van Thienen P, Benzerara K, Breuer D, Gillmann C, Labrosse S, Lognonné P, Spohn T (2007) Water, life, and planetary geodynamical evolution. Space Sci Rev 129:167–203

    Article  CAS  Google Scholar 

  • Wagner FW, Sohl F, Hussmann H, Grott M, Rauer H (2011) Interior structure models of solid exoplanets using material laws in the infinite pressure limit. Icarus 214(2):366–376

    Article  Google Scholar 

  • Ward PD, Brownlee D (2000) Rare earth: why complex life is uncommon in the universe. Springer, New York

    Google Scholar 

  • Weber RC, Lin P-Y, Garnero EJ, Williams Q, Lognonné P (2011) Seismic detection of the lunar core. Science 331(6015):309–312

    Article  PubMed  CAS  Google Scholar 

  • Wegener A (1912) Die Entstehung der Kontinente (The origin of continents, in German). Geol Rundsch 3:276–292

    Article  Google Scholar 

  • Weller MB, Lenardic A (2012) Hysteresis in mantle convection: plate tectonics systems. Geophys Res Lett 39(L10202):1–5

    Google Scholar 

  • Wicht J, Mandea M, Takahashi F, Christensen UR, Matsushima M, Langlais B (2008) The origin of Mercury’s internal magnetic field, Space science series of ISSI. Mercury/Springer, Berlin

    Google Scholar 

  • Wilde SA, Valley JW, Peck WH, Graham CM (2001) Evidence from detrital zircons for the existence of continental crust and oceans on the Earth 4.4 Gyr ago. Nature 409:175–178

    Article  PubMed  CAS  Google Scholar 

  • Williams DM, Kasting JF, Wade RA (1997) Habitable moons around extrasolar giant planets. Nature 385(6613):234–236

    Article  PubMed  CAS  Google Scholar 

  • Wolszczan A, Frail DA (1992) A planetary system around the millisecond pulsar PSR1257  +  12. Nature 355:145–147

    Article  Google Scholar 

  • Wood AT Jr, Wattson RB, Pollack JB (1968) Venus: estimates of the surface temperature and pressure from radio and radar measurements. Science 162(3849):114–116

    Article  PubMed  Google Scholar 

  • Wordsworth RD, Forget F, Selsis F, Millour E, Charnay B, Madeleine J-B (2011) Gliese 581d is the first discovered terrestrial-mass exoplanets in the habitable zone. Astrophys J 733(2):L48

    Article  CAS  Google Scholar 

  • Yoshida M (2010) Preliminary three-dimensional model of mantle convection with deformable, mobile continental lithosphere. Earth Planet Sci Lett 295(1–2):205–218

    Article  CAS  Google Scholar 

  • Zolotov MY, Kargel JS (2009) On the chemical composition of Europa’s Icy shell, ocean, and underlying rocks. In: Pappalardo RT, McKinnon WB, Khurana KK (eds) Europa. University of Arizona Press, Tucson, p 431

    Google Scholar 

  • Zuber MT (2001) The crust and mantle of Mars. Nature 412:220–227

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lena Noack .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Noack, L., Breuer, D. (2013). Interior and Surface Dynamics of Terrestrial Bodies and their Implications for the Habitability. In: de Vera, JP., Seckbach, J. (eds) Habitability of Other Planets and Satellites. Cellular Origin, Life in Extreme Habitats and Astrobiology, vol 28. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6546-7_12

Download citation

Publish with us

Policies and ethics