Skip to main content
Log in

Thermal Evolution and Magnetic Field Generation in Terrestrial Planets and Satellites

  • Published:
Space Science Reviews Aims and scope Submit manuscript

Abstract

Of the terrestrial planets, Earth and Mercury have self-sustained fields while Mars and Venus do not. Magnetic field data recorded at Ganymede have been interpreted as evidence of a self-generated magnetic field. The other icy Galilean satellites have magnetic fields induced in their subsurface oceans while Io and the Saturnian satellite Titan apparently are lacking magnetic fields of internal origin altogether. Parts of the lunar crust are remanently magnetized as are parts of the crust of Mars. While it is widely accepted that the magnetization of the Martian crust has been caused by an early magnetic field, for the Moon alternative explanations link the magnetization to plasma generated by large impacts. The necessary conditions for a dynamo in the terrestrial planets and satellites are the existence of an iron-rich core that is undergoing intense fluid motion. It is widely accepted that the fluid motion is caused by convection driven either by thermal buoyancy or by chemical buoyancy or by both. The chemical buoyancy is released upon the growth of an inner core. The latter requires a light alloying element in the core that is enriched in the outer core as the solid inner core grows. In most models, the light alloying element is assumed to be sulfur, but other elements such as, e.g., oxygen, silicon, and hydrogen are possible. The existence of cores in the terrestrial planets is either proven beyond reasonable doubt (Earth, Mars, and Mercury) or the case for a core is compelling as for Venus and the Moon. The Galilean satellites Io and Ganymede are likely to have cores judging from Galileo radio tracking data of the gravity fields of these satellites. The case is less clear cut for Europa. Callisto is widely taken as undifferentiated or only partially differentiated, thereby lacking an iron-rich core. Whether or not Titan has a core is not known at the present time. The terrestrial planets that do have magnetic fields either have a well-established inner core with known radius and density such as Earth or are widely agreed to have an inner core such as Mercury. The absence of an inner core in Venus, Mars, and the Moon (terrestrial bodies that lack fields) is not as well established although considered likely. The composition of the Martian core may be close to the Fe–FeS eutectic which would prevent an inner core to grow as long as the core has not cooled to temperatures around 1500 Kelvin. Venus may be on the verge of growing an inner core in which case a chemical dynamo may begin to operate in the geologically near future. The remanent magnetization of the Martian and the lunar crust is evidence for a dynamo in Mars’ and possibly the Moon’s early evolution and suggests that powerful thermally driven dynamos are possible. Both the thermally and the chemically driven dynamo require that the core is cooled at a sufficient rate by the mantle. For the thermally driven dynamo, the heat flow from the core into the mantle must by larger than the heat conducted along the core adiabat to allow a convecting core. This threshold is a few mW m−2 for small planets such as Mercury, Ganymede, and the Moon but can be as large as a few tens mW m−2 for Earth and Venus. The buoyancy for both dynamos must be sufficiently strong to overcome Ohmic dissipation. On Earth, plate tectonics and mantle convection cool the core efficiently. Stagnant lid convection on Mars and Venus are less efficient to cool the core but it is possible and has been suggested that Mars had plate tectonics in its early evolution and that Venus has experienced episodic resurfacing and mantle turnover. Both may have had profound implications for the evolution of the cores of these planets. It is even possible that inner cores started to grow in Mars and Venus but that the growth was frustrated as the mantles heated following the cessation of plate tectonics and resurfacing. The generation of Ganymede’s magnetic field is widely debated. Models range from magneto-hydrodynamic convection in which case the field will not be self-sustained to chemical and thermally-driven dynamos. The wide range of possible compositions for Ganymede’s core allows models with a completely liquid near eutectic Fe–FeS composition as well as models with Fe inner cores or cores in with iron snowfall.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • M.H. Acuña, J.E.P. Connerney, N.F. Ness, R.P. Lin, D. Mitchell, C.W. Carlson, J. McFadden, K.A. Anderson, H. Rème, C. Mazelle, D. Vignes, P. Wasilewski, P. Cloutier, Magnetic field and plasma observations at Mars: Initial results of the Mars global surveyor mission. Science 279, 1676–1680 (1998)

    Article  ADS  Google Scholar 

  • M.H. Acuña, J.E.P. Connerney, N.F. Ness, R.P. Lin, D. Mitchell, C.W. Carlson, J. McFadden, K.A. Anderson, H. Rème, C. Mazelle, D. Vignes, P. Wasilewski, P. Cloutier, Global distribution of crustal magnetism discovered by the Mars global surveyor MAG/ER experiment. Science 284, 790–793 (1999)

    Article  ADS  Google Scholar 

  • M.H. Acuña, J.E.P. Connerney, P. Wasilewski, R.P. Lin, D. Mitchell, K.A. Anderson, C.W. Carlson, J. McFadden, H. Rème, C. Mazelle, D. Vignes, S.J. Bauer, P. Cloutier, N.F. Ness, Magnetic field of Mars: Summary of results from the aerobraking and mapping orbits. J. Geophys. Res. 106(E10), 23,403–23,418 (2001)

    Article  ADS  Google Scholar 

  • O. Aharonson, M.T. Zuber, S.C. Solomon, Crustal remanence in an internally magnetized non-uniform shell: A possible source for Mercury’s magnetic field? Earth Planet. Sci. Lett. 218, 261–268 (2004)

    Article  ADS  Google Scholar 

  • K.M. Alley, E.M. Parmentier, Numerical experiments on thermal convection in a chemically stratified viscous fluid heated from below: implications for a model of lunar evolution. Phys. Earth Planet. Int. 108, 15–32 (1998)

    Article  ADS  Google Scholar 

  • B.J. Anderson, M.H. Acuña, H. Korth, M.E. Purucker, C.L. Johnson, J.A. Slavin, S.C. Solomon, R.L. McNutt, The structure of Mercury’s magnetic field from MESSENGER’s first flyby. Science 321, 82–85 (2008). doi:10.1126/science.1159081

    Article  ADS  Google Scholar 

  • J.D. Anderson, E.L. Lau, W.L. Sjogren, G. Schubert, W.B. Moore, Gravitational constraints on the internal structure of Ganymede. Nature 384, 541–543 (1996)

    Article  ADS  Google Scholar 

  • J.D. Anderson, E.L. Lau, W.L. Sjogren, G. Schubert, W.B. Moore, Europa’s differentiated internal structure: Inferences from two Galileo encounters. Science 276, 1236–123 (1998)

    Article  ADS  Google Scholar 

  • J.D. Anderson, R.A. Jacobson, T.P. McElrath et al., Shape, mean radius, gravity field and interior structure of Callisto. Icarus 153, 157–161 (2001a). doi:10.1006/icar.2001.6664

    Article  ADS  Google Scholar 

  • J.D. Anderson, R.A. Jacobson, E.L. Lau, W.B. Moore, G. Schubert, Io’s gravity field and interior structure. J. Geophys. Res. 106(E12), 32,963–32,969 (2001b)

    Article  ADS  Google Scholar 

  • A. Anselmi, G. Scoon, BepiColombo, ESA’s Mercury Cornerstone mission. Planet. Space Sci. 49, 1409–1420 (2001)

    Article  ADS  Google Scholar 

  • J. Arkani-Hamed, J. Dyment, Magnetic potential and magnetization contrasts of Earth’s lithosphere. J. Geophys. Res. 101(B5), 11,401–11,426 (1996)

    Article  ADS  Google Scholar 

  • Y. Asahara, D.J. Frost, D.C. Rubie, Partitioning of FeO between magnesiowustite and liquid iron at high pressures and temperatures: Implications for the composition of the Earth’s outer core. Earth Planet. Sci. Lett. 257, 435–449 (2007)

    Article  ADS  Google Scholar 

  • J. Aubert, S. Labrosse, C. Poitou, Modelling the paleo-evolution of the geodynamo. Geophys. J. Int. 179, 1414–1428 (2009). doi:10.1111/j.1365-246X.2009.04361.x

    Article  ADS  Google Scholar 

  • H. Backes, F.M. Neubauer, M.K. Dougherty, N. Achilleos, N. André, C.S. Arridge, C. Bertucci, G.H. Jones, K.K. Khurana, C.T. Russell, A. Wennmacher, Titan’s magnetic field signature during the first Cassini encounter. Science 308, 992–995 (2005)

    Article  ADS  Google Scholar 

  • P.S. Balog, R.A. Secco, D.C. Rubie, D.J. Frost, Equation of state of liquid Fe-10 wt.% S: Implications for the metallic cores of planetary bodies. J. Geophys. Res. 108(B2), 2124 (2003). doi:10.1029/2001JB001646

    Article  ADS  Google Scholar 

  • Basaltic Volcanism Study Project (BVSP), Basaltic Volcanism on the Terrestrial Planets (Pergamon, New York, 1981).

    Google Scholar 

  • D. Bercovici, Generation of plate tectonics from lithosphere-mantle flow and void-volatile self-lubrication. Earth Planet. Sci. Lett. 154, 139–151 (1998)

    Article  ADS  Google Scholar 

  • C.M. Bertka, Y. Fei, Mineralogy of the Martian interior up to core–mantle boundary pressures. J. Geophys. Res. 102, 5251–5264 (1997)

    Article  ADS  Google Scholar 

  • M.T. Bland, A.P. Showman, G. Tobie, The production of Ganymede’s magnetic field. Icarus 198, 384–399 (2008)

    Article  ADS  Google Scholar 

  • U. Bleil, N. Petersen, Variations in magnetization intensity and low-temperature titanomagnetite oxidation of ocean floor basalts. Nature 301, 384–388 (1983)

    Article  ADS  Google Scholar 

  • J.R. Booker, K.C. Stengel, Further thoughts on convective heat transport in a variable viscosity fluid. J. Fluid Mech. 86, 289–291 (1978)

    Article  MATH  ADS  Google Scholar 

  • S.I. Braginsky, Mac-oscillations of the hidden ocean of the core. J. Geomag. Geoelectr. 45, 1517–1538 (1993)

    Google Scholar 

  • S.I. Braginsky, Formation of the stratified ocean of the core. Earth Planet. Sci. Lett. 243, 650–656 (2006)

    Article  ADS  Google Scholar 

  • S.I. Braginsky, P.H. Roberts, Equations governing convection in Earth’s core and the geodynamo. Geophys. Astrophys. Fluid Dyn. 79, 1–97 (1995)

    Article  ADS  Google Scholar 

  • D. Breuer, W.B. Moore, Dynamics and thermal history of the terrestrial planets, the Moon, and Io, in Planets and Moons, ed. by T. Spohn. Treatise on Geophysics, vol. 10 (Elsevier, Amsterdam, 2007), pp. 299–348

    Chapter  Google Scholar 

  • D. Breuer, T. Spohn, Early plate tectonics versus single-plate tectonics: Evidence from the magnetic field history and crust evolution. J. Geophys. Res.-Planets 108(E7), 5072 (2003). doi:10.1029/20002JE001999

    Article  ADS  Google Scholar 

  • D. Breuer, T. Spohn, Viscosity of the Martian mantle and its initial temperature: Constraints from crust formation history and the evolution of the magnetic field. Planet. Space Sci. 54, 153–169 (2006)

    Article  ADS  Google Scholar 

  • D. Breuer, S.A. Hauck, M. Buske, M. Pauer, T. Spohn, Interior evolution of Mercury. Space Sci. Rev. 132(2–4), 229–260 (2007). doi:10.1007/s11214-007-9228-9

    Article  ADS  Google Scholar 

  • D. Breuer, H. Hussmann, T. Spohn, The magnetic dichotomy of the Galilean satellites Europa and Ganymede, in Geophysical Research Abstracts, European Geosciences Union—General Assembly, Vienna (Austria), 2008-04-13–2008-04-18, abstract 07511, 2008

  • B.A. Buffett, Estimates of heat flow in the deep mantle based on the power requirements for the geodynamo. Geophys. Res. Lett. 29, 7 (2002)

    Article  ADS  Google Scholar 

  • B. Buffett, Core-mantle interactions, in Treatise on Geophysics, ed. by G. Schubert (Elsevier, Amsterdam, 2007), pp. 345–358

    Chapter  Google Scholar 

  • B.A. Buffett, H.E. Huppert, J.R. Lister, A.W. Woods, Analytical model for solidification of the Earth’s core. Nature 356, 329–331 (1992)

    Article  ADS  Google Scholar 

  • B.A. Buffett, H.E. Huppert, J.R. Lister, A.W. Woods, On the thermal evolution of the Earth’s core. J. Geophys. Res. 101, 7989–8006 (1996)

    Article  ADS  Google Scholar 

  • M. Buske, Dreidimensionale thermische Evolutionsmodelle für das Innere von Mars und Merkur, Doktorarbeit, IMPRS, Katlenburg-Lindau, 2006

  • F.H. Busse, Phys. Earth Planet. Inter. 12, 350–358 (1976)

    Article  ADS  Google Scholar 

  • F.H. Busse, R. Simitev, Planetary dynamos, in Planets and Moons, ed. by T. Spohn. Treatise on Geophysics, vol. 10 (Elsevier, Amsterdam, 2007), pp. 281–290

    Chapter  Google Scholar 

  • S. Butler, W. Peltier, S. Costin, Numerical models of the Earth’s thermal history: Effects of inner-core solidification and core potassium. Phys. Earth Planet. Inter. 152, 22–42 (2005)

    Article  ADS  Google Scholar 

  • B. Chen, J. Li, S.A. Hauck, Non-ideal liquidus curve in the Fe–S system and Mercury’s snowing core. Geophys. Res. Lett. 35 (2008). doi:10.1029/2008GL033311

  • U.R. Christensen, Thermal evolution models for the Earth. J. Geophys. Res. 90, 2995–3007 (1985)

    Article  ADS  Google Scholar 

  • U.R. Christensen, A deep dynamo generating Mercury’s magnetic field. Nature 444, 1056–1058 (2006). doi: 10.1038/nature05342

    Article  ADS  Google Scholar 

  • U. Christensen, Dynamo scaling laws and applications to the planets. Space Sci. Rev. (2009). doi:10.1007/s11214-009-9553-2, this issue

    Google Scholar 

  • U.R. Christensen, J. Aubert, Geophys. J. Int. 166(1), 97–114 (2006)

    Article  ADS  Google Scholar 

  • U.R. Christensen, A. Tilgner, Power requirement of the geodynamo from ohmic losses in numerical and laboratory dynamos. Nature 429, 169–171 (2004)

    Article  ADS  Google Scholar 

  • U.R. Christensen, J. Wicht, Numerical dynamo simulations, in Core Dynamics, ed. by P. Olson. Treatise on Geophysics, vol. 8 (Elsevier, Amsterdam, 2007), pp. 245–282

    Chapter  Google Scholar 

  • U.R. Christensen, V. Holzwarth, A. Reiners, Energy flux determines magnetic field strength of planets and stars. Nature 457, 167–169 (2009)

    Article  ADS  Google Scholar 

  • L. Chudinovskikh, R. Boehler, Eutectic melting in the system Fe–S to 44 GPa. Earth Planet Sci. Lett. 257, 97–103 (2007). doi:10.1016/j.epsl.2007.02.024

    Article  ADS  Google Scholar 

  • S.M. Cisowski, M. Fuller, Lunar paleointensities via the IRMs normalization method and the early magnetic history of the Moon, in Origin of the Moon, ed. by W.K. Hartmann, R.J. Phillips, G.J. Taylor (Lunar and Planetary Science Institute, Houston, 1986), pp. 411–424

    Google Scholar 

  • J.E.P. Connerney, Planetary magnetism, in Planets and Moons, ed. by T. Spohn. Treatise on Geophysics, vol. 10 (Elsevier, Amsterdam, 2007), pp. 243–280

    Chapter  Google Scholar 

  • J.E.P. Connerney, M.H. Acuña, P. Wasilewski, N.F. Ness, H. Rème, C. Mazelle, D. Vignes, R.P. Lin, D. Mitchell, P. Cloutier, Magnetic lineations in the ancient crust of Mars. Science 284, 794–798 (1999)

    Article  ADS  Google Scholar 

  • J.E.P. Connerney, M.H. Acuña, N.F. Ness, T. Spohn, G. Schubert, Mars crustal magnetism. Space Sci. Rev. 111(1–2), 1–32 (2004)

    Article  ADS  Google Scholar 

  • J.E.P. Connerney, M.H. Acuña, N.F. Ness, G. Kletetschka, D.L. Mitchell, R.P. Lin, H. Reme, From the cover: Tectonic implications of Mars crustal magnetism. Proc. Natl. Acad. Sci. 102, 14970–14975 (2005)

    Article  ADS  Google Scholar 

  • V. Conzelmann, Thermische Evolution des Planeten Merkur berechnet unter Anwendung verschiedener Viskositätsgesetze. Ph.D. Thesis, Westfälische Wilhelms-Universität Münster, 1999

  • S.O. Costin, S.L. Butler, Modelling the effects of internal heating in the core and lowermost mantle on the earth’s magnetic history. Phys. Earth Planet. Inter. 157, 55–71 (2006)

    Article  ADS  Google Scholar 

  • F.J. Crary, F. Bagenal, Remanant ferromagnetism and the interior structure of Ganymede. J. Geophys. Res. 103, 25757–25773 (1998)

    Article  ADS  Google Scholar 

  • A. Davaille, C. Jaupart, Transient high-Rayleigh number thermal convection with large viscosity variations. J. Fluid Mech. 253, 141–166 (1993)

    Article  ADS  Google Scholar 

  • F. Deschamps, C. Sotin, Inversion of two-dimensional numerical convection experiments for a fluid with a strongly temperature-dependent viscosity. Geophys. J. Int. 143, 204–218 (2000)

    Article  ADS  Google Scholar 

  • J.O. Dickey, P.L. Bender, J.E. Faller et al., Lunar laser ranging: A continuing legacy of the Apollo program. Science 265, 482–490 (1994)

    Article  ADS  Google Scholar 

  • G. Dreibus, H. Wänke, Mars: A volatile-rich planet. Meteoritics 20, 367–382 (1985)

    ADS  Google Scholar 

  • D.J. Dunlop, O. Ozdemir, Rock Magnetism: Fundamentals and Frontiers (Cambridge University Press, Cambridge, 1997), p. 573

    Book  Google Scholar 

  • A.M. Dziewonski, D.L. Anderson, Preliminary reference Earth model. Phys. Earth Planet. Inter. 25, 297–356 (1981)

    Article  ADS  Google Scholar 

  • L.T. Elkins-Tanton, E.M. Parmentier, P.C. Hess, Magma ocean fractional crystallization and cumulate overturn in terrestrial planets: Implications for Mars. Meteorit. Planet. Sci. 38(12), 1753–1771 (2003)

    Article  ADS  Google Scholar 

  • L.T. Elkins-Tanton, S. Zaranek, E.M. Parmentier, Early magnetic field and magmatic activity on Mars from magma ocean overturn. Earth Planet. Sci. Lett. 236, 1–12 (2005)

    Article  ADS  Google Scholar 

  • Y. Fei, C.T. Prewitt, H. Mao, C.M. Bertka, Structure and density of FeS at high pressure and high temperature and the internal structure of Mars. Science 268, 1892–1894 (1995)

    Article  ADS  Google Scholar 

  • Y. Fei, C.M. Bertka, L.W. Finger, High-pressure iron-sulfur compound, Fe3S2, and melting relations in the Fe–FeS system. Science 275, 1621–1623 (1997)

    Article  Google Scholar 

  • Y. Fei, J. Li, C.M. Bertka, C.T. Prewitt, Structure type and bulk modulus of Fe3S, a new iron–sulfur compound. Am. Mineral. 85, 1830–1833 (2000)

    Google Scholar 

  • W.M. Folkner, C.F. Yoder, D.N. Yuan, E.M. Standish, R.A. Preston, Interior structure and seasonal mass redistribution of Mars from radio tracking of Mars Pathfinder. Science 278, 1749–1752 (1997)

    Article  ADS  Google Scholar 

  • H.V. Frey, Impact constraints on the age and origin of the lowlands of Mars. Geophys. Res. Lett. 33, L08S02 (2006). doi:10.1029/2005GL024484

    Article  MathSciNet  Google Scholar 

  • G. Giampieri, A. Balogh, Mercury’s thermoelectric dynamo model revisited. Planet. Space Sci. 50, 757–762 (2002)

    Article  ADS  Google Scholar 

  • K.H. Glassmeier, H.-U. Auster, U. Motschmann, A feedback dynamo generating Mercury’s magnetic field. Geophys. Res. Lett. 34, L22201 (2007). doi:10.1029/2007GL031662

    Article  ADS  Google Scholar 

  • F. Goarant, F. Guyot, J. Peyronneau, J.-P. Poirier, High-pressure and high-temperature reactions between silicates and liquid iron alloys, in the diamond anvil cell, studied by analytical electron microscopy. J. Geophys. Res. 97, 4477–4487 (1992)

    Article  ADS  Google Scholar 

  • O. Grasset, E.M. Parmentier, Thermal convection in a volumetrically heated, infinite Prandtl number fluid with strongly temperature-dependent viscosity: Implications for planetary thermal evolution. J. Geophys. Res. 103, 18171–18181 (1998)

    Article  ADS  Google Scholar 

  • O. Grasset, C. Sotin, F. Deschamps, On the internal structure and dynamics of Titan. Planet. Space Sci. 48, 617–636 (2000)

    Article  ADS  Google Scholar 

  • C. Grignè, S. Labrosse, P.J. Tackley, Convective heat transfer as a function of wavelength: Implications for the cooling of the Earth. J. Geophys. Res. 110, B03409 (2005). doi:10.1029/2004JB003376

    Article  Google Scholar 

  • M. Grott, D. Breuer, The evolution of the martian elastic lithosphere and implications for crustal and mantle rheology. Icarus 193, 503–515 (2008). doi:10.1016/j.icarus.2007.08.015

    Article  ADS  Google Scholar 

  • D. Gubbins, Energetics of the Earth’s core. J. Geophys. 43, 453–464 (1977)

    Google Scholar 

  • D. Gubbins, D. Alfë, G. Masters, D. Price, M.J. Gillan, Can the Earth’s dynamo run on heat alone? Geophys. J. Int. 155, 609–622 (2003)

    Article  ADS  Google Scholar 

  • D. Gubbins, D. Alfë, G. Masters, D. Price, M.J. Gillan, Gross thermodynamics of 2-component core convection. Geophys. J. Int. 157, 1407–1414 (2004)

    Article  ADS  Google Scholar 

  • U. Hansen, D.A. Yuen, High Rayleigh number regime of temperature-dependent viscosity convection and the Earth’s early thermal history. Geophys. Res. Lett. 20, 2191–2194 (1993)

    Article  ADS  Google Scholar 

  • H. Harder, U. Christensen, A one-plume model of Martian mantle convection. Nature 380, 507–509 (1996)

    Article  ADS  Google Scholar 

  • H. Harder, G. Schubert, Sulfur in Mercury’s core? Icarus 151, 118–122 (2001)

    Article  ADS  Google Scholar 

  • S.A. Hauck, R.J. Phillips, Thermal and crustal evolution of Mars. J. Geophys. Res. 107(E7) (2002). doi:10.1029/2001JE001801

  • S.A. Hauck, A.J. Dombard, R.J. Phillips, S.C. Solomon, Internal and tectonic evolution of Mercury. Earth Planet. Sci. Lett. 222(3–4), 713–728 (2004)

    Article  ADS  Google Scholar 

  • S.A. Hauck, J.M. Aurnou, A.J. Dombard, Sulfur’s impact on core evolution and magnetic field generation on Ganymede. J. Geophys. Res. 111 (2006)

  • J.W. Head, R. Greeley, M.P. Golombek et al., Geological processes and evolution. Space Sci. Rev. 96(1/4), 263–292 (2001)

    Article  ADS  Google Scholar 

  • M.H. Heimpel, J.M. Aurnou, F.M. Al-Shamali, N. Gomez Perez, A numerical study of dynamo action as a function of spherical shell geometry. Earth Planet. Sci. Lett. 236 (2005). doi:10.1016/j.epsl.2005.04.032

  • J.W. Hernlund, C. Thomas, P.J. Tackley, Phase boundary double crossing and the structure of Earth’s deep mantle. Nature 434, 882–886 (2005). doi:10.1038/nature03472

    Article  ADS  Google Scholar 

  • J.M. Hewitt, D.P. McKenzie, N.O. Weiss, Dissipative heating in convective flows. J. Fluid Mech. 68, 721–738 (1975)

    Article  MATH  ADS  Google Scholar 

  • R. Hide, The hydrodynamics of the Earth’s core. Phys. Chem. Earth 1, 94–137 (1956)

    Article  Google Scholar 

  • R. Hide, Comments on the Moon’s magnetism. Moon 4, 39 (1972)

    Article  ADS  Google Scholar 

  • L. Hood, Z. Huang, Formation of magnetic anomalies antipodal to lunar impact basins: Two dimensional model calculations. J. Geophys. Res. 96, 9837–9846 (1991)

    Article  ADS  Google Scholar 

  • L.L. Hood, D.L. Mitchell, R.P. Lin, M.H. Acuna, A.B. Binder, Initial measurements of the lunar induced magnetic dipole moment using Lunar Prospector magnetometer data. Geophys. Res. Lett. 26, 2327–2330 (1999)

    Article  ADS  Google Scholar 

  • L. Hood, A. Vickery, Magnetic field amplification and generation in hypervelocity meteorid impacts with application to lunar paleomagnetism, in Proceedings of the Lunar and Planetary Science Conference 15th, Part 1. J. Geophys. Res. 89(supplement), C211–C223 (1984)

  • L.L. Hood, A. Zakharian, J. Halekas et al., Initial mapping and interpretation of lunar crustal magnetic anomalies using Lunar Prospector magnetometer data. J. Geophys. Res. 106, 27825–27839 (2001)

    Article  ADS  Google Scholar 

  • W.B. Hubbard, in Planetary Interiors (Van Nostrand–Reinhold, New York, 1984)

    Google Scholar 

  • C. Huettig, Scaling laws for internally heated mantle convection, Ph.D. Thesis, Westfälische Wilhelms-Universität Münster, 2009

  • G. Hulot, C. Eymin, B. Langlais, M. Mandea, N. Olsen, Small-scale structure of the geodynamo inferred from Oersted and Magsat satellite data. Nature 416, 620–623 (2002)

    Article  ADS  Google Scholar 

  • H. Hussman, T. Spohn, Thermal-orbital evolution of Io and Europa. Icarus 171, 391–410 (2004)

    Article  ADS  Google Scholar 

  • H. Hussmann, C. Sotin, J.I. Lunine, Interiors and evolution of Icy satellites, in Planets and Moons, ed. by T. Spohn. Treatise on Geophysics, vol. 10 (Elsevier, Amsterdam, 2007), pp. 509–540

    Chapter  Google Scholar 

  • J.A. Jacobs, The Earth’s inner core. Nature 172, 297–298 (1953)

    Article  ADS  Google Scholar 

  • C. Jaupart, S. Labrosse, J.-C. Mareschal, Temperatures, heat and energy in the mantle of the Earth, in Mantle Dynamics. Treatise of Geophysics, vol. 7 (Elsevier, Amsterdam, 2007), pp. 253–303

    Chapter  Google Scholar 

  • H. Jeffreys, The instability of a compressible fluid heated below. Proc. Camb. Philos. Soc. 26, 170–172 (1930)

    Article  MATH  Google Scholar 

  • C.A. Jones, Thermal and compositional convection in the outer core, in Core Dynamics, ed. by P. Olson. Treatise on Geophysics, vol. 8 (Elsevier, Amsterdam, 2007), pp. 131–185

    Chapter  Google Scholar 

  • S. Karato, D.C. Rubie, Towards an experimental study of deep mantle rheology: A new multi-anvil specimen assembly for deformation studies under high pressure and temperatures. J. Geophys. Res. 102, 20,111–20,122 (1997)

    Article  ADS  Google Scholar 

  • S. Karato, P. Wu, Rheology of the upper mantle. Science 260, 771–778 (1993)

    Article  ADS  Google Scholar 

  • Y. Ke, V.S. Solomatov, Early transient superplumes and the origin of the Martian crustal dichotomy. J. Geophys. Res. 111 (2006). doi:10.1029/2005JE002631

  • T. Keller, P.J. Tackley, Towards self-consistent modelling of the Martian dichotomy: The influence of low-degree convection on crustal thickness distribution. Icarus 202 (2009). doi:10.1016/j.icarus.2009.03.029

  • B.L.N. Kennett, E.R. Engdahl, R.P. Buland, Constraints on seismic velocities in the Earth from travel times. Geophys. J. Int. 122, 108–124 (1995)

    Article  ADS  Google Scholar 

  • R. Kerswell, Elliptical instability. Ann. Rev. Fluid Mech. 34, 83–113 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  • A. Khan, K. Mosegaard, J.G. Williams, P. Lognonné, Does the Moon possess a molten core? Probing the deep lunar interior using results from LLR and Lunar Prospector. J. Geophys. Res. 109(E09), E09007 (2004). doi:10.1029/2004JE002294

    Article  Google Scholar 

  • J. Kimura, T. Nakagawa, K. Kurita, Size and compositional constraints of Ganymede’s metallic core for driving an active dynamo. Icarus (2009). doi:10.1016/-j.icarus.2009.02.026

  • R.L. Kirk, D.J. Stevenson, Thermal evolution of a differentiated Ganymede and implications for surface features. Icarus 69, 91–134 (1987)

    Article  ADS  Google Scholar 

  • M.G. Kivelson, K.K. Khurana, C.T. Russell, R.J. Walker, J. Warnecke, F.V. Coroniti, C. Polanskey, D.J. Southwood, G. Schubert, Discovery of Ganymede’s magnetic field by the Galileo Spacecraft. Nature 384, 537–541 (1996)

    Article  ADS  Google Scholar 

  • M.G. Kivelson, K.K. Khurana, M. Volwerk, The permanent and inductive magnetic moments of Ganymede. Icarus 157, 507–522 (2002)

    Article  ADS  Google Scholar 

  • E. Knittle, R. Jeanloz, Earth’s core-mantle boundary: Results of experiments at high pressures and temperatures. Science 251, 1438–1443 (1991)

    Article  ADS  Google Scholar 

  • A.S. Konopliv, S.W. Asmar, E. Carranza, W.L. Sjogren, D.N. Yuan, Recent gravity models as a result of the Lunar Prospector mission. Icarus 150, 1–18 (2001)

    Article  ADS  Google Scholar 

  • A.S. Konopliv, C.F. Yoder, E.M. Standish, D.N. Yuan, W.L. Sjogren, A global solution for the Mars static and seasonal gravity, Mars orientation, Phobos and Deimos masses, and Mars ephemeris. Icarus 182, 23–50 (2006)

    Article  ADS  Google Scholar 

  • W. Konrad, T. Spohn, Thermal history of the Moon: Implications for an early core dynamo and post-accretional magmatism. Adv. Space Res. 19(10), 1511–1521 (1997)

    Article  ADS  Google Scholar 

  • J. Korenaga, Archean geodynamics and the thermal evolution of the Earth, in Archean Geodynamics and Environments, ed. by K. Benn, J. Mareschal, K.C. Condie. Geophysical Monograph Series, vol. 164 (American Geophysical Union, Washington, 2006), pp. 7–32

    Google Scholar 

  • Y.N. Kulikov, H. Lammer, H.I.M. Lichtenegger, T. Penz, D. Breuer, T. Spohn, R. Lundin, H.K. Biernat, A comparative study of the influence of the active young sun on the early atmospheres of Earth, Venus, and Mars. Space Sci. Rev. 129(1–3), 207–243 (2007). doi:10.1007/s11214-007-9192-4

    Article  ADS  Google Scholar 

  • O.L. Kuskov, V.A. Kronrod, Core sizes and internal structure of Earth’s and Jupiter’s satellites. Icarus 151, 204–227 (2001)

    Article  ADS  Google Scholar 

  • S. Labrosse, Hotspots, mantle plumes and core heat loss. Earth Planet. Sci. Lett. 199, 147–156 (2002)

    Article  ADS  Google Scholar 

  • S. Labrosse, Thermal and magnetic evolution of the Earth’s core. Phys. Earth Planet. Inter. 140, 127–143 (2003)

    Article  ADS  Google Scholar 

  • S. Labrosse, C. Jaupart, Thermal evolution of the earth: Secular changes and fluctuations of plate characteristics. Earth Planet. Sci. Lett. 260, 465–481 (2007)

    Article  ADS  Google Scholar 

  • S. Labrosse, J.-P. Poirier, J.-L. Le Mouîl, On cooling of the Earth’s core. Phys. Earth Planet. Inter. 99, 1–17 (1997)

    Article  ADS  Google Scholar 

  • S. Labrosse, J.-P. Poirier, J.-L. Le Mouîl, The age of the inner core. Earth Planet. Sci. Lett. 190, 111–123 (2001)

    Article  ADS  Google Scholar 

  • S. Labrosse, J.W. Hernlund, N. Coltice, A crystallizing dense magma ocean at the base of Earth’s mantle. Nature 450, 866–869 (2007)

    Article  ADS  Google Scholar 

  • A. Landolt-Börnstein, Terrestrial planets and satellites: Planetary interiors, in Numerical Data and Functional Relationships in Science and Technology. New Series Group VI: Astronomy and Astrophysics, 4: Astronomy, Astrophysics, and Cosmology (Subvolume B Solar System) (Springer, Berlin, 2009), pp. 200–224. ISBN 978-3-540-88054-7. ISSN 0942-8011

    Google Scholar 

  • B. Langlais, M.E. Purucker, M. Mandea, Crustal magnetic field of Mars. J. Geophys. Res. 109, 37 (2004). doi:10.1029/2003JE002048

    Article  Google Scholar 

  • B. Langlais, V. Lesur, M.E. Purucker, J.P.E. Connerney, M. Mandea, Crustal magnetic fields of terrestrial planets. Space Sci. Rev. (2009). doi:10.1007/s11214-009-9557-y, this issue

    Google Scholar 

  • T. Lay, J. Hernlund, B.A. Buffett, Core-mantle boundary heat flow. Nat. Geosci. 1, 25–32 (2008)

    Article  ADS  Google Scholar 

  • F.G. Lemoine, D.E. Smith, D.D. Rowlands et al., An improved solution of the gravity field of Mars (GMM-2B) from Mars Global Surveyor. J. Geophys. Res. 106, 23359–23376 (2001)

    Article  ADS  Google Scholar 

  • J.S. Lewis, The temperature gradient in the solar nebula. Science 186, 440–443 (1972)

    Article  ADS  Google Scholar 

  • J.S. Lewis, Io: Geochemistry of sulfur. Icarus 50, 103–114 (1982)

    Article  ADS  Google Scholar 

  • J.S. Lewis, Origin and composition of Mercury, in Mercury, ed. by F. Vilas, C.R. Chapman, M.S. Matthews (Univ. of Arizona Press, Tucson, 1988), pp. 651–666

    Google Scholar 

  • J. Li, C.B. Agee, Geochemistry of mantle-core differentiation at high pressure. Nature 381, 686–689 (1996)

    Article  ADS  Google Scholar 

  • J.R. Lister, Expressions for the dissipation driven by convection in the Earth’s core. Phys. Earth Planet. Inter. 140, 145–158 (2003)

    Article  ADS  Google Scholar 

  • J.R. Lister, B.A. Buffett, The strength and efficiency of the thermal and compositional convection in the geodynamo. Phys. Earth Planet. Inter. 91, 17–30 (1995)

    Article  Google Scholar 

  • J.R. Lister, B.A. Buffett, Stratification of the outer core at the core-mantle boundary. Phys. Earth Planet. Inter. 105, 5–19 (1998)

    Article  ADS  Google Scholar 

  • K. Lodders, B. Fegley, The Planetary Scientist’s Companion (Oxford University Press, Oxford, 1998)

    Google Scholar 

  • P. Lognonne, C. Johnson, Planetary seismology, in Planets and Moons, ed. by T. Spohn. Treatise on Geophysics, vol. 10 (Elsevier, Amsterdam, 2007), pp. 69–122

    Chapter  Google Scholar 

  • D.E. Loper, The gravitationally powered dynamo. Geophys. J. R. Astron. Soc. 54, 389–404 (1978a)

    Google Scholar 

  • D.E. Loper, Some thermal consequences of a gravitationally powered dynamo. J. Geophys. Res. 83, 5961–5970 (1978b)

    Article  ADS  Google Scholar 

  • J.I. Lunine, D.J. Stevenson, Clathrate and ammonia hydrates at high pressure: Application to the origin of methane on Titan. Icarus 70, 61–77 (1987)

    Article  ADS  Google Scholar 

  • J.L. Margot, S.J. Peale, R.F. Jurgens, M.A. Slade, I.V. Holin, Large longitude libration of mercury reveals a molten core. Science 316(5825), 710–714 (2007)

    Article  ADS  Google Scholar 

  • W.B. McKinnon, Core evolution in the icy satellites, and the prospects for dynamo-generated magnetic fields. Bull. Am. Astron. Soc. 28, 1076 (1996)

    ADS  Google Scholar 

  • W.B. McKinnon, K. Zahnle, B.A. Ivanov, H.J. Melosh, Cratering on Venus: Modeling and observations, in Venus II, ed. by S.W. Bougher, D.M. Hunten, R.J. Phillips (University of Arizona Press, Tucson, 1997), pp. 969–1014

    Google Scholar 

  • H.Y. McSween Jr., SNC meteorites: Clues to Martian petrologic evolution? Rev. Geophys. 23, 391–416 (1985)

    Article  ADS  Google Scholar 

  • D.L. Mitchell, R.P. Lin, H. Rème, M.H. Acuña, P.A. Cloutier, N.F. Ness, Crystal magnetospheres observed in the Martian night hemisphere, in American Astronomical Society, DPS Meeting #31, abstracts #59.04, Bull. Am. Astron. Soc. 31, 1584 (1999)

  • D.L. Mitchell, R.P. Lin, C. Mazelle, H. Rème, P.A. Cloutier, J.E.P. Connerney, M.H. Acuña, N.F. Ness, Probing Mars’ crustal magnetic field and ionosphere with the MGS electron reflectometer. J. Geophys. Res. 106(E10), 23,419–23,428 (2001)

    Article  ADS  Google Scholar 

  • D.L. Mitchell, J.S. Halekas, R.P. Lin, S. Frey, L.L. Hood, M.H. Acuña, Global mapping of lunar crustal fields by Lunar Prospector. Icarus 194, 401–409 (2008)

    Article  ADS  Google Scholar 

  • P.S. Mohit, J. Arkani-Hamed, Impact demagnetization of the Martian crust. Icarus 168 (2004). doi:10.1016/j.icarus.2003.12.005

  • L.-N. Moresi, V.S. Solomatov, Numerical investigation of 2D convection with extremely large viscosity variations. Phys. Fluids 7, 2154–2162 (1995)

    Article  MATH  ADS  Google Scholar 

  • S. Mollett, Thermal and magnetic constraints on the cooling of the Earth. Geophys. J. R. Astron. Soc. 76, 653–666 (1984)

    ADS  Google Scholar 

  • W.B. Moore, Heat transport in a convecting layer heated from within and below. J. Geophys. Res. 113 (2008)

  • K. Nagel, D. Breuer, T. Spohn, A model for the interior structure, evolution, and differentiation of Callisto. Icarus 169, 402–412 (2004)

    Article  ADS  Google Scholar 

  • T. Nakagawa, P.J. Tackley, Effects of thermo-chemical mantle convection on the thermal evolution of the Earth’s core. Earth Planet. Sci. Lett. 220, 107–119 (2004)

    Article  ADS  Google Scholar 

  • T. Nakagawa, P.J. Tackley, Deep mantle heat flow and thermal evolution of the Earth’s core in thermochemical multiphase models of mantle convection. Geochem. Geophys. Geosyst. 6, Q08003 (2005). doi:10.1029/2005GC000967

    Article  Google Scholar 

  • Y. Nakamura, G. Latham, D. Lammlein, M. Ewing, F. Duennebier, J. Dorman, Deep lunar interior inferred from recent seismic data. Geophys. Res. Lett. 1, 137–140 (1974)

    Article  ADS  Google Scholar 

  • N.F. Ness, K.W. Behannon, R.P. Lepping, Y.C. Whang, Magnetic field of Mercury confirmed. Nature 255, 204 (1975)

    Article  ADS  Google Scholar 

  • N.F. Ness, M.H. Acuña, J. Connerney, P. Wasilewski, C. Mazelle, J. Sauvaud, D. Vignes, C. D’Uston, H. Reme, R. Lin, D.L. Mitchell, J. McFadden, D. Curtis, P. Cloutier, S.J. Bauer, MGS magnetic fields and electron reflectometer investigation: Discovery of paleomagnetic fields due to crustal remanence. Adv. Space Res. 23(11), 1879–1886 (1999)

    Article  ADS  Google Scholar 

  • F. Nimmo, Energetics of the core, in Treatise on Geophysics, vol. 8, ed. by G. Schubert (Elsevier, Amsterdam, 2007), pp. 31–66

    Chapter  Google Scholar 

  • F. Nimmo, D. Stevenson, Influence of early plate tectonics on the thermal evolution and magnetic field of Mars. J. Geophys. Res. 105, 11,969–11,979 (2000)

    Article  ADS  Google Scholar 

  • F. Nimmo, G.D. Price, J. Brodholt, D. Gubbins, The influence of potassium on core and geodynamo evolution. Geophys. J. Int. 156, 263–376 (2004)

    Article  Google Scholar 

  • P. Olson, Overview on core dynamics, in Treatise on Geophysics, vol. 8, ed. by G. Schubert (Elsevier, Amsterdam, 2007), pp. 1–31. Chap. 8.01

    Chapter  Google Scholar 

  • C. O’Neill, A. Lenardic, Geological consequences of super-sized Earths. Geophys. Res. Lett. 34, L19204 (2007). doi:10.1029/2007GL030598

    Article  ADS  Google Scholar 

  • H. Ozawa, K. Hirose, M. Mitome, Y. Bando, N. Sata, Y. Ohishi, Chemical equilibrium between ferropericlase and molten iron to 134 GPa and implications for iron content at the bottom of the mantle. Geophys. Res. Lett. 35 (2008)

  • M. Ozima, K. Seki, N. Terada, Y.N. Miura, F.A. Podosek, H. Shinagawa, Terrestrial nitrogen and noble gases in lunar soils. Nature 436, 655–659 (2005)

    Article  ADS  Google Scholar 

  • E.M. Parmentier, S. Zhong, M. Zuber, Gravitational differentiation due to initial chemical stratification: Origin of lunar asymmetry by the creep of denseKREEP? Earth Planet Sci. Lett. 201, 473–480 (2002)

    Article  ADS  Google Scholar 

  • S.J. Peale, Inferences from the dynamical history of Mercury’s rotation. Icarus 28, 459–467 (1976)

    Article  ADS  Google Scholar 

  • S.J. Peale, The rotational dynamics of Mercury and the state of its core, in Mercury, ed. by F. Vilas, C.R. Chapman, M.S. Matthews (University of Arizona Press, Tucson, 1988), pp. 461–493

    Google Scholar 

  • J.-P. Poirier, Transport properties of liquid metals and viscosity of the Earth’s core. Phys. Earth Planet. Inter. 92, 99–105 (1988)

    Google Scholar 

  • J.-P. Poirier, Light elements in the Earth’s core: A critical review. Phys. Earth Planet. Inter. 85, 319–337 (1994)

    Article  ADS  Google Scholar 

  • M.E. Purucker, A global model of the internal magnetic field of the Moon based on Lunar Prospector magnetometer observations. Icarus 197 (2008). doi:10.1016/j.icarus.2008.03.016

  • N.J. Rappaport, A.S. Konopliv, A.B. Kucinskas, P.G. Ford, An improved 360 degree and order model of Venus topography. Icarus 139, 19–31 (1999)

    Article  ADS  Google Scholar 

  • C.C. Reese, V.S. Solomatov, J.R. Baumgardner, Scaling laws for time dependent stagnant lid convection in a spherical shell. Phys. Earth Planet. Inter. 149, 361–370 (2005)

    Article  ADS  Google Scholar 

  • G.O. Roberts, Fast viscous Bernard convection. Geophys. Astrophys. Fluid Dyn. 12, 235–272 (1979)

    Article  MATH  ADS  Google Scholar 

  • P.H. Roberts, Theory of the geodynamo, in Core Dynamics, ed. by P. Olson. Treatise on Geophysics, vol. 8 (Elsevier, Amsterdam, 2007), pp. 67–105

    Chapter  Google Scholar 

  • J.H. Roberts, S. Zhong, Degree-1 convection in the Martian mantle and the origin of the hemisphere dichotomy. J. Geophys. Res. 111, E06013 (2006)

    Article  Google Scholar 

  • J.H. Roberts, R.J. Lillis, M. Manga, Giant impacts on early Mars and the cessation of the Martian dynamo. J. Geophys. Res. 114, E04009 (2009). doi:10.1029/2008JE003287

    Article  Google Scholar 

  • P.H. Roberts, C.A. Jones, A.R. Calderwood, Energy fluxes and ohmic dissipation in the Earth’s core, in Earth’s Core and Lower Mantle, ed. by C.A. Jones, A.M. Soward, K. Zhang (Taylor & Francis, London, 2003), pp. 100–129

    Google Scholar 

  • P. Rochette, G. Fillion, R. Ballou, F. Brunet, B. Ouladdiaf, L.L. Hood, High pressure magnetic transition in pyrrhotite and impact demagnetization on Mars. Geophys. Res. Lett. 30 (2003). doi:10.1029/2003GL017359

  • S.K. Runcorn, An ancient lunar magnetic dipole field. Nature 253, 701–703 (1975)

    Article  ADS  Google Scholar 

  • C.T. Russell, R.C. Elphic, J.A. Slavin, Initial Pioneer Venus magnetic field results: Dayside observations. Science 203, 745 (1979a)

    Article  ADS  Google Scholar 

  • C.T. Russell, R.C. Elphic, J.A. Slavin, Initial Pioneer Venus magnetic field results: Nightside observations. Science 205, 114 (1979b)

    Article  ADS  Google Scholar 

  • C. Sanloup, A. Jambon, P. Gillet, A simple chondritic model of Mars. Phys. Earth Planet. Inter. 112, 43–54 (1999)

    Article  ADS  Google Scholar 

  • G.R. Sarson, C.A. Jones, K. Zhang, G. Schubert, Magneto-convection dynamos and the magnetic fields of Io and Ganymede. Science 276, 1106–1108 (1997)

    Article  ADS  Google Scholar 

  • G.G. Schaber, R.G. Strom, H.J. Moore et al., Geology and distribution of impact craters on Venus: What are they telling us? J. Geophys. Res. 97, 13,257–13,301 (1992)

    Article  ADS  Google Scholar 

  • G. Schubert, Ann. Rev. Earth Planet. Sci. 7, 289 (1979)

    Google Scholar 

  • G. Schubert, T. Spohn, Thermal history of Mars and the sulfur content of its core. J. Geophys. Res. 95, 14095–14104 (1990)

    Article  ADS  Google Scholar 

  • G. Schubert, P. Cassen, R.E. Young, Subsolidus convective cooling histories of terrestrial planets. Icarus 38, 192–211 (1979)

    Article  ADS  Google Scholar 

  • G. Schubert, M.N. Ross, D.J. Stevenson, T. Spohn, Mercury’s thermal history and the generation of its magnetic field, in Mercury, ed. by F. Viulas, C.R. Chapman, M.S. Matthews (Univ. Press of Arizona, Tuscon, 1988), pp. 514–561

    Google Scholar 

  • G. Schubert, S.C. Solomon, D.L. Turcotte, M.J. Drake, N.H. Sleep, Origin and thermal evolution of Mars, in Mars, ed. by H.H. Kieffer, B.M. Jakosky, C.W. Snyder, M.S. Matthews (Univ. Press of Arizona, Tucson, 1992), pp. 147–183

    Google Scholar 

  • G. Schubert, K. Zhang, M.G. Kivelson, J.D. Anderson, The magnetic field and internal structure of Ganymede. Nature 384, 544–545 (1996)

    Article  ADS  Google Scholar 

  • G. Schubert, C.T. Russell, W.B. Moore, Timing of the Martian dynamo. Nature 408, 666–667 (2000)

    Article  ADS  Google Scholar 

  • G. Schubert, D.L. Turcotte, P. Olson, Mantle Convection in the Earth and Planets (Cambridge Univ. Press, Cambridge, 2001), 940 pp.

    Book  Google Scholar 

  • G. Schubert, J.D. Anderson, T. Spohn, W.B. McKinnon, Interior composition, structure and dynamics of the Galilean satellites, in Jupiter, ed. by F. Bagnell, T. Dowling, W.B. McKinnon. The Planet, Satellites and Magnetosphere (Cambridge University Press, Cambridge, 2004), pp. 281–306

    Google Scholar 

  • S. Schumacher, D. Breuer, Influence of a variable thermal conductivity on the thermochemical evolution of Mars. J. Geophys. Res. 111, E02006 (2006). doi:10.1029/2005JE002429

    Article  Google Scholar 

  • H.P. Scott, Q. Williams, F.J. Ryerson, Experimental constraints on the chemical evolution of large icy satellites. Earth Planet. Sci. Lett. 203, 399–412 (2002)

    Article  ADS  Google Scholar 

  • H.N. Sharpe, W.R. Peltier, Parameterized mantle convection and the Earth’s thermal history. Geophys. Res. Lett. 5, 737–740 (1978)

    Article  ADS  Google Scholar 

  • H.N. Sharpe, W.R. Peltier, A thermal history model for the Earth with parameterized convection. Geophys. J. R. Astron. Soc. 59, 171–203 (1979)

    ADS  Google Scholar 

  • A.P. Showman, R. Malhotra, Tidal evolution into the Laplace resonance and the resurfacing of Ganymede. Icarus 127, 93–111 (1997)

    Article  ADS  Google Scholar 

  • A.P. Showman, D.J. Stevenson, R. Malhotra, Coupled orbital and thermal evolution of Ganymede. Icarus 129, 367–383 (1997)

    Article  ADS  Google Scholar 

  • R.W. Siegfried, S.C. Solomon, Icarus 23, 192–205 (1974)

    Article  ADS  Google Scholar 

  • W.L. Sjogren, W.B. Banerdt, P.W. Chodas et al., The Venus gravity field and other geodetic parameters, in Venus II: Geology, Geophysics, Atmosphere, and Solar Wind Environment, ed. by S.W. Bougher, D.M. Hunten, R.J. Philips (Univ. Press of Arizona, Tucson, 1997), pp. 1125–1162

    Google Scholar 

  • D.E. Smith, M.T. Zuber, The shape of Mars and the topographic signature of the hemispheric dichotomy. Science 271, 184–188 (1996)

    Article  ADS  Google Scholar 

  • F. Sohl, G. Schubert, Interior structure, composition, and mineralogy of the terrestrial planets, in Planets and Moons, ed. by T. Spohn. Treatise on Geophysics, vol. 10 (Elsevier, Amsterdam, 2007), pp. 27–68

    Chapter  Google Scholar 

  • F. Sohl, T. Spohn, The structure of Mars: Implications from SNC-Meteorites. J. Geophys. Res. 102, 1613–1635 (1997)

    Article  ADS  Google Scholar 

  • F. Sohl, T. Spohn, D. Breuer, K. Nagel, Implications from Galileo observations on the interior structure and chemistry of the Galilean satellites. Icarus 157, 104–119 (2002)

    Article  ADS  Google Scholar 

  • F. Sohl, G. Schubert, T. Spohn, Geophysical constraints on the composition and structure of the Martian interior. J. Geophys. Res. 110, E12008 (2005). doi:10.1029/2005JE002520

    Article  ADS  Google Scholar 

  • V.S. Solomatov, Scaling of temperature- and stress-dependent viscosity. Phys. Fluids 7, 266–274 (1995)

    Article  MATH  ADS  Google Scholar 

  • V.S. Solomatov, L.N. Moresi, Scaling of time-dependent stagnant lid convection: Application to small-scale convection on Earth and other terrestrial planets. J. Geophys. Res. 105, 21795–21817 (2000)

    Article  ADS  Google Scholar 

  • S.C. Solomon, R.L. McNutt Jr., R.E. Gold, M.H. Acuña, D.N. Baker, W.V. Boynton, C.R. Chapman, A.F. Cheng, G. Gloeckler, J.W. Head III, S.M. Krimigis, W.E. McClintock, S.L. Murchie, S.J. Peale, R.J. Phillips, M.S. Robinson, J.A. Slavin, D.E. Smith, R.G. Strom, J.I. Trombka, M.T. Zuber, Planet. Space Sci. 49, 1445–1465 (2001)

    Article  ADS  Google Scholar 

  • C.S. Solomon, O. Aharonson, J.M. Aurnou et al., New perspectives on ancient Mars. Science 307, 1214–1220 (2005)

    Article  ADS  Google Scholar 

  • A. Souriau, Deep Earth structure—The Earth’s cores, in Seismology and the Structure of the Earth, ed. by A.M. Dziewonski, B.A. Romanowicz. Treatise on Geophysics, vol. 1 (Elsevier, Amsterdam, 2007), pp. 655–693

    Chapter  Google Scholar 

  • E.A. Spiegel, G. Veronis, On the Boussinesq approximation for a compressible fluid. Astrophys. J. 131, 442–447 (1960)

    Article  ADS  MathSciNet  Google Scholar 

  • T. Spohn, Mantle differentiation and thermal evolution of Mars, Mercury, and Venus. Icarus 90, 222–236 (1991)

    Article  ADS  Google Scholar 

  • T. Spohn, D. Breuer, Implications from Galileo observations on the interior structure and evolution of the Galilean satellites, in Planetary Systems: The Long View, ed. by L.M. Celnikier, J. Tran Thanh Van (Editions Frontiers, 1998), pp. 135–145

  • T. Spohn, F. Sohl, D. Breuer, Mars. Astron. Astrophys. Rev. 8, 181–235 (1998)

    Article  ADS  Google Scholar 

  • T. Spohn, F. Sohl, K. Wieczerkowski, V. Conzelmann, The interior structure of Mercury: What we know, what we expect from BepiColombo. Planet. Space Sci. 49, 1561–1570 (2001a)

    Article  ADS  Google Scholar 

  • T. Spohn, M.A. Acunã, D. Breuer et al., Geophysical constraints on the evolution of Mars. Space Sci. Rev. 96, 231–262 (2001b)

    Article  ADS  Google Scholar 

  • T. Spohn, W. Konrad, D. Breuer, R. Ziethe, Lunar volcanism induced by heat advected from the lower mantle: Results of 2D and 3D mantle convection calculations. Icarus 149, 54–65 (2001c)

    Article  ADS  Google Scholar 

  • F.D. Stacey, O.L. Anderson, Electrical and thermal conductivities of Fe–Ni–Si alloy under core conditions. Phys. Earth Planet. Inter. 124, 153–162 (2001)

    Article  ADS  Google Scholar 

  • S. Stanley, Glatzmeier, Dynamo models for planets other than Earth. Space Sci. Rev. (2009). doi:10.1007/s11214-009-9573-y, this issue

    Google Scholar 

  • S. Stanley, J. Bloxham, W.E. Hutchinson, M.T. Zuber, Thin shell dynamo models consistent with Mercury’s weak observed magnetic field. Earth Planet. Sci. Lett. 234, 27–38 (2005). doi:10.1016/j.epsl.2005.02.040

    Article  ADS  Google Scholar 

  • S. Stanley, L. Elkins-Tanton, M.T. Zuber, E.M. Parmentier, Mars’ paleomagnetic field as the result of a single-hemisphere dynamo. Science 321(5897), 1822–1825 (2008)

    Article  ADS  Google Scholar 

  • D.R. Stegman, A.M. Jellinek, S.A. Zatman, J.R. Baumgardner, M.A. Richards, An early lunar core dynamo driven by thermochemical mantle convection. Nature 421, 143–146 (2003a)

    Article  ADS  Google Scholar 

  • V. Steinbach, D. Yuen, Effects of depth-dependent properties on the thermal anomalies produced in flush instabilities from phase transitions. Phys. Earth Planet. Inter. 86, 165–183 (1994)

    Article  ADS  Google Scholar 

  • D.R. Stegman, A.M. Jellinek, S.A. Zatman, J.R. Baumgardner, M.A. Richards, An early lunar core dynamo driven by thermochemical mantle convection. Nature 421(6919), 143–146 (2003b)

    Article  ADS  Google Scholar 

  • A. Stephenson, S.K. Runcorn, D.W. Collinson, On changes in the intensity of the ancient lunar magnetic field, in Proceedings of the 6th Lunar Science Conference. Geochim. Cosmochim. Acta (1975)

  • D.J. Stevenson, Planetary magnetic fields. Rep. Prog. Phys. 46, 555–620 (1983). doi:10.1088/0034-4885/46/5/001

    Article  ADS  Google Scholar 

  • D.J. Stevenson, Mercury’s magnetic field: A thermoelectric dynamo? Earth Planet. Sci. Lett. 82, 114 (1987)

    Article  ADS  Google Scholar 

  • D.J. Stevenson, When Galileo met Ganymede. Nature 384, 511–512 (1996)

    Article  ADS  Google Scholar 

  • D.J. Stevenson, Mars core and magnetism. Nature 412, 214–219 (2001)

    Article  ADS  Google Scholar 

  • D.J. Stevenson, Possible connections between the history of the Venus magnetic field and observable features, American Geophysical Union, Spring Meeting 2002, abstract #P21A-08 (2002)

  • D. Stevenson, T. Spohn, G. Schubert, Magnetism and thermal evolution of the terrestrial planets. Icarus 54, 466–489 (1983)

    Article  ADS  Google Scholar 

  • A.J. Stewart, M.W. Schmidt, W. van Westrenen, C. Liebske, Mars: A new core-crystallization regime. Science 316, 1323–1325 (2007)

    Article  ADS  Google Scholar 

  • R.G. Strom, N.J. Trask, J.E. Guest, J. Geophys. Res. 80, 2478–2507 (1975)

    Article  ADS  Google Scholar 

  • P.J. Tackley, The quest for self-consistent incorporation of plate tectonics in mantle convection, in History and Dynamics of Global Plate Motions, ed. by M.A. Richards, R. Gordon, R. van der Hilst. Geophysical Monograph Series, vol. 121 (American Geophysical Union, Washington, 2000a)

    Google Scholar 

  • P.J. Tackley, Self-consistent generation of tectonic plates in time-dependent, three-dimensional mantle convection simulations, Part 1: Pseudoplastic yielding. Geochem. Geophys. Geosyst. 1 (2000b)

  • J.A. Tarduno, R.D. Cottrell, M.K. Watkeys, D. Bauch, Geomagnetic field strength 3.2 billion years ago recorded by single silicate crystals. Nature 446, 657–660 (2007)

    Article  ADS  Google Scholar 

  • H. Terasaki, T. Kato, S. Urakawa, K. Funakoshi, A. Suzuki, T. Okada, M. Maeda, J. Sato, T. Kubo, S. Kasai, The effect of temperature, pressure, and sulfur content on viscosity of the Fe–FeS melt. Earth Planet. Sci. Lett. 190, 93–101 (2001)

    Article  ADS  Google Scholar 

  • Y. Thibault, M.J. Walter, The influence of pressure and temperature on the metal-silicate partition coefficients of nickel and cobalt in a model C1 chondrite and implications for metal segregation in a deep matma ocean. Geochim. Cosmochim. Acta 59, 991–1002 (1995)

    Article  ADS  Google Scholar 

  • A. Tilgner, Precession driven dynamos. Phys. Fluids 17, 034104 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  • G. Tobie, A. Mocquet, C. Sotin, Tidal dissipation within large icy satellites: Europa and Titan. Icarus 177, 534–549 (2005)

    Article  ADS  Google Scholar 

  • P.B. Toft, J. Arkani-Hamed, Magnetization of the Pacific Ocean lithosphere deduced from Magsat data. J. Geophys. Res. 97, 4387–4406 (1992)

    Article  ADS  Google Scholar 

  • R.A. Trompert, U. Hansen, On the Rayleigh number dependence of convection with strongly temperature dependent viscosity. Phys. Fluids 10(2), 351–360 (1998)

    Article  ADS  Google Scholar 

  • D.L. Turcotte, An episodic hypothesis for Venusian tectonics. J. Geophys. Res. 98, 17,061–17,068 (1993)

    Article  ADS  Google Scholar 

  • D.L. Turcotte, E.R. Oxburgh, Finite amplitude convective cells and continental drift. J. Fluid. Mech. 28, 29–42 (1967)

    Article  MATH  ADS  Google Scholar 

  • D. Valencia, R.J. O’Connell, Convection scaling and subduction on Earth and super-Earths. Earth Planet. Sci. Lett. 286, 492–502 (2009)

    Article  ADS  Google Scholar 

  • D. Valencia, R.J. O’Connell, D. Sasselov, Inevitability of plate tectonic on super-Earths. Astrophys. J. 670, L45–L48 (2007)

    Article  ADS  Google Scholar 

  • T. Van Holst, The rotation of the terrestrial planets, in Planets and Moons, ed. by T. Spohn. Treatise on Geophysics, vol. 10 (Elsevier, Amsterdam, 2007), pp. 123–164

    Google Scholar 

  • L. Vocadlo, Mineralogy of the Earth—The Earth’s core: Iron and iron alloys, in Mineral Physics, ed. by D. Price. Treatise on Geophysics, vol. 2 (Elsevier, Amsterdam, 2007), pp. 91–120

    Chapter  Google Scholar 

  • S.A. Weinstein, The effects of a deep mantle endothermic phase change on the structure of thermal convection in silicate planets. J. Geophys. Res. 100(E6), 11,719–11,728 (1995)

    Article  ADS  Google Scholar 

  • B. Weiss, J. Berdahl, L. Elkins-Tanton, S. Stanley, E.A. Lima, L. Carpozen, Magnetism on the angrite parent body and the early differentiation of planetesimals. Science 332, 713–716 (2008)

    Article  ADS  Google Scholar 

  • G.W. Wetherill, Acculmulation of mercury from planetesimals, in Mercury, ed. by F. Viulas, C.R. Chapman, M.S. Matthews (Univ. Press of Arizona, Tucson, 1988), pp. 514–561

    Google Scholar 

  • M.A. Wieczorek, Gravity and topography of the terrestrial planets, in Planets and Moons, ed. by T. Spohn. Treatise on Geophysics, vol. 10 (Elsevier, Amsterdam, 2007), pp. 165–206

    Chapter  Google Scholar 

  • U. Wienbruch, T. Spohn, A self sustained magnetic field on Io? Planet. Space Sci. 9, 1045–1057 (1995)

    Article  ADS  Google Scholar 

  • J.G. Williams, D.H. Boggs, C.F. Yoder, J.T. Ratcliff, J.O. Dickey, Lunar rotational dissipation in solid body and molten core. J. Geophys. Res. 106, 27,933–27,968 (2001)

    ADS  Google Scholar 

  • J.-P. Williams, F. Nimmo, Thermal evolution of the Martian core: Implications for an early dynamo. Geology 32, 97–100 (2004)

    Article  ADS  Google Scholar 

  • D.T. Woods, J.M. Shull, C.L. Sarazin, Astrophys. J. 249, 399 (1981)

    Article  ADS  Google Scholar 

  • S. Xie, P.J. Tackley, Evolution of helium and argon isotopes in a convecting mantle. Phys. Earth Planet. Inter. 146, 417–439 (2004)

    Article  ADS  Google Scholar 

  • C.F. Yoder, The free librations of a dissipative Moon. Philos. Trans. R. Soc. Lond. Ser. A 303, 327–338 (1981)

    Article  ADS  Google Scholar 

  • C.F. Yoder, Venusian spin dynamics, in Venus II: Geology, Geophysics, Atmosphere, and Solar Wind Environment, ed. by S.W. Bougher, D.M. Hunten, R.J. Philips (Univ. Press of Arizona, Tucson, 1997), pp. 1087–1124

    Google Scholar 

  • C.F. Yoder, A.S. Konopliv, D.N. Yuan, E.M. Standish, W.M. Folkner, Fluid core size of Mars from detection of the solar tide (1993). doi:10.1126/science.1079645

  • C.F. Yoder, A.S. Konopliv, D.N. Yuan, E.M. Standish, W.M. Folkner, Fluid core size of Mars from detection of the solar tide. Science 300, 299–303 (2003). doi:10.1126/science.1079645

    Article  ADS  Google Scholar 

  • T. Yukutake, Implausibility of thermal convection in the Earth’s solid inner core. Phys. Earth Planet. Inter. 108, 1–13 (1998)

    Article  ADS  Google Scholar 

  • R. Ziethe, K. Seiferlin, H. Hiesinger, Duration and extent of lunar volcanism: Comparison of 3D convection models to mare basalt ages. Planet. Space Sci. 57(7), 784–796 (2009). doi:10.1016/j.pss.2009.02.002

    Article  ADS  Google Scholar 

  • V.N. Zharkov, V.P. Trubitsyn, Physics of Planetary Interiors (Pachart, Tucson, 1978)

    Google Scholar 

  • S. Zhong, M.T. Zuber, Degree-1 mantle convection and the crustal dichotomy on Mars. Earth Planet. Sci. Lett. 189, 75–84 (2001)

    Article  ADS  Google Scholar 

  • M.T. Zuber, S.C. Solomon, R.J. Phillips et al., Internal structure and early thermal evolution of Mars from Mars Global Surveyor topography and gravity. Science 287, 1788–1793 (2000)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Doris Breuer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Breuer, D., Labrosse, S. & Spohn, T. Thermal Evolution and Magnetic Field Generation in Terrestrial Planets and Satellites. Space Sci Rev 152, 449–500 (2010). https://doi.org/10.1007/s11214-009-9587-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11214-009-9587-5

Keywords

Navigation