Advertisement

Hume–Rothery Stabilization Mechanism in Tsai-Type Cd6Ca Approximant and e/a Determination of Ca and Cd Elements in the Periodic Table

  • U. MizutaniEmail author
  • M. Inukai
  • H. Sato
  • K. Nozawa
  • E. S. Zijlstra
Conference paper

Abstract

We performed FLAPW electronic structure calculations with subsequent FLAPW-Fourier analysis for Tsai-type Cd6Ca containing 168 atoms per unit cell with space group \(Pm\bar{3}\). The square of the Fermi diameter (2k F )2, e/a and critical reciprocal lattice vector |G|2s were determined. The origin of the pseudogap across the Fermi level was interpreted in terms of the Hume–Rothery stabilization mechanism based on Fermi surface–Brillouin zone interactions (Fs–Bz) involved. The intuitively expected value of e/a=2.0 was confirmed. By extending our work to intermetallic compounds existing in the Cd–Ca binary alloy system, we determined the e/a values for Ca embedded in the polyvalent matrix Cd. The effective e/a for Ca was deduced to be two.

Keywords

Hume–Rothery stabilization mechanism FLAPW-Fourier analysis Fs–Bz interactions Tsai-type approximant Valence of Ca 

Notes

Acknowledgements

One of the authors (UM) is grateful for the financial support of the Grant-in-Aid for Scientific Research (Contract No. 23560793) from the Japan Society for the Promotion of Science.

References

  1. 1.
    Mizutani U (2010) Hume–Rothery rules for structurally complex alloy phases. CRC Press/Taylor & Francis Group, Boca Raton CrossRefGoogle Scholar
  2. 2.
    Inukai M, Zijlstra ES, Sato H, Mizutani U (2011) Philos Mag 91:4247 CrossRefGoogle Scholar
  3. 3.
    Mizutani U, Inukai M, Sato H, Zijlstra ES (2012) Philos Mag 92:1691 CrossRefGoogle Scholar
  4. 4.
    Tsai AP, Guo JQ, Abe E, Takakura H, Sato TJ (2000) Nature (London) 408:537 CrossRefGoogle Scholar
  5. 5.
    Takakura H, Guo J, Tsai AP (2001) Philos Mag Lett 81:411 CrossRefGoogle Scholar
  6. 6.
    Gómez CP, Lidin S (2003) Phys Rev B 68:024203 CrossRefGoogle Scholar
  7. 7.
    Nozawa K, Ishii Y (2008) J Phys Condens Matter 31:315206 CrossRefGoogle Scholar
  8. 8.
    Lin Q, Corbett JD (2004) Inorg Chem 43:1912 CrossRefGoogle Scholar
  9. 9.
    Ishimasa T, Kasano Y, Tachibana A, Kashimoto S, Osaka K (2007) Philos Mag 87:2887 CrossRefGoogle Scholar
  10. 10.
    Blaha P, Schwarz K, Madsen G, Kvasnicka D, Luitz J (2012) WIEN2k. http://www.wien2k.at/, last accessed on August 12, 2012
  11. 11.
    Mizutani U, Inukai M, Sato H, Zijlstra ES (2012) Chem Soc Rev 41:6799 CrossRefGoogle Scholar
  12. 12.
    Villars P (1997) Pearson’s handbook, crystallographic data. ASM, Materials Park Google Scholar
  13. 13.
    Mizutani U, Inukai M, Sato H, Zijlstra ES (2012) In: International conference on aperiodic Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • U. Mizutani
    • 1
    Email author
  • M. Inukai
    • 2
  • H. Sato
    • 3
  • K. Nozawa
    • 4
  • E. S. Zijlstra
    • 5
  1. 1.Nagoya Industrial Science Research InstituteNagoyaJapan
  2. 2.Toyota Technological InstituteHisakataNagoyaJapan
  3. 3.Aichi University of EducationAichiJapan
  4. 4.Department of PhysicsChuo UniversityTokyoJapan
  5. 5.Theoretical PhysicsUniversity of KasselKasselGermany

Personalised recommendations