Advertisement

Active Region Part B. Internal Quantum Efficiency

  • Jong-In Shim
Part of the Topics in Applied Physics book series (TAP, volume 126)

Abstract

In the first part, we introduced experimental results of the internal quantum efficiency (IQE) droop depending on temperature in both the electroluminescence and the resonant photoluminescence. The IQE droop mechanisms ever reported are reviewed. An inherent origin of the efficiency droop is suggested to be the saturation of the radiative recombination rate in the InGaN quantum well at low current and subsequent increase in the nonradiative recombination rates at high current. The degree of saturation is largely influenced by operating temperature and the effective active volume. Although the saturation of the radiative recombination rate is the common origin of the IQE droop, the shapes of the IQE versus current, i.e. the IQE droop curve, vary with the dominant nonradiative recombination process. In the second part, we have reviewed the IQE measurement methods theoretically as well as experimentally. A simple IQE estimation method based on the constant ABC model in the carrier rate equation is introduced in terms of its convenience and application limitation. Other methods have been also reviewed by focusing on all-optical methods such as the temperature-dependent photoluminescence (TDPL) and the temperature-dependent time-resolved photoluminescence (TD-TRPL) methods.

Keywords

Carrier Lifetime Nonradiative Recombination Auger Recombination Internal Quantum Efficiency Recombination Coefficient 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    E.F. Schubert, Light-Emitting Diodes (Cambridge University Press, New York, 2010) Google Scholar
  2. 2.
    Y. Yang, X.A. Cao, C.H. Yan, Appl. Phys. Lett. 94, 041117 (2009) ADSGoogle Scholar
  3. 3.
    X.A. Cao, A. Teetsova, F. Shahedipour-Sandvikb, S.D. Arthura, J. Cryst. Growth 264, 172 (2004) ADSGoogle Scholar
  4. 4.
    B. Monemar, B.E. Sernelius, Appl. Phys. Lett. 91, 181103 (2007) ADSGoogle Scholar
  5. 5.
    S. Choi, H.J. Kim, S.-S. Kim, J. Liu, J. Kim, J.-H. Ryou, R.D. Dupuis, A.M. Fischer, F.A. Ponce, Appl. Phys. Lett. 96, 221105 (2010) ADSGoogle Scholar
  6. 6.
    J. Yun, D.-P. Han, J.-I. Shim, D.-S. Shin, IEEE Trans. Electron Devices 59, 1799 (2012) Google Scholar
  7. 7.
    S. Hwang, J.-I. Shim, IEEE Trans. Electron Devices 55, 1123 (2008) ADSGoogle Scholar
  8. 8.
    G.P. Agrawal, N.K. Dutta, Semiconductor Lasers, 2nd edn. (Van Norstrand Reinhold, New York, 1993) Google Scholar
  9. 9.
    I. Schnitzer, E. Yablonovitch, C. Caneau, T.J. Gmitter, A. Scherer, Appl. Phys. Lett. 63, 2174 (1993) ADSGoogle Scholar
  10. 10.
    A.I. Zhmakin, Phys. Rep. 498, 189 (2011) ADSGoogle Scholar
  11. 11.
    M. Peter, A. Laubsch, W. Bergbauer, T. Meyer, M. Sabathil, J. Baur, B. Hahn, Phys. Status Solidi A 206, 1125 (2009) ADSGoogle Scholar
  12. 12.
    A. Laubsch, M. Sabathil, W. Bergbauer, M. Strassburg, H. Lugauer, M. Peter, S. Lutgen, N. Linder, K. Streubel, J. Hader, J.V. Moloney, B. Pasenow, S.W. Koch, Phys. Status Solidi C 6, 913 (2009) ADSGoogle Scholar
  13. 13.
    A. Laubsch, M. Sabathil, J. Baur, M. Peter, B. Hahn, IEEE Trans. Electron Devices 57, 79 (2010) ADSGoogle Scholar
  14. 14.
    A.A. Efremov, N.I. Bochkareva, R.I. Gorbunov, D.A. Lavrinovich, Y.T. Rebane, D.V. Tarkhin, Y.G. Shreter, Semiconductors 40, 605 (2006) ADSGoogle Scholar
  15. 15.
    M.-H. Kim, M.F. Schubert, Q. Dai, J.K. Kim, E.F. Schubert, J. Piprek, Y. Park, Appl. Phys. Lett. 91, 183507 (2007) ADSGoogle Scholar
  16. 16.
    K. Fujiwara, H. Jimi, K. Kaneda, Phys. Status Solidi C 6, 814 (2009) ADSGoogle Scholar
  17. 17.
    X. Li, X. Ni, J. Lee, M. Wu, U. Özgür, H. Morkoç, T. Paskova, G. Mulholland, K.R. Evans, Appl. Phys. Lett. 95, 121107 (2009) ADSGoogle Scholar
  18. 18.
    Y.-D. Lin, A. Chakraborty, S. Brinkley, H.C. Kuo, T. Melo, K. Fujito, J.S. Speck, S.P. DenBaars, S. Nakamura, Appl. Phys. Lett. 94, 261108 (2009) ADSGoogle Scholar
  19. 19.
    S.-P. Chang, T.-C. Lu, L.-F. Zhuo, C.-Y. Jang, D.-W. Lin, H.-C. Yang, H.-C. Kuo, S.-C. Wang, J. Electrochem. Soc. 157, 501 (2010) Google Scholar
  20. 20.
    N.F. Gardner, G.O. Müller, Y.C. Shen, G. Chen, S. Watanabe, W. Götz, M.R. Krames, Appl. Phys. Lett. 91, 243506 (2007) ADSGoogle Scholar
  21. 21.
    Y. Yang, X.A. Cao, C.H. Yan, Phys. Status Solidi A 206, 195 (2009) ADSGoogle Scholar
  22. 22.
    J. Xie, X. Ni, Q. Fan, R. Shimada, U. Özgür, H. Morkoç, Appl. Phys. Lett. 93, 121107 (2008) ADSGoogle Scholar
  23. 23.
    D.S. Meyaard, G.B. Lin, Q. Shan, J. Cho, E.F. Schubert, H. Shim, M.H. Kim, C. Sone, Appl. Phys. Lett. 99, 251115 (2011) Google Scholar
  24. 24.
    J. Hader, J.V. Moloney, S.W. Koch, Appl. Phys. Lett. 96, 221106 (2010) ADSGoogle Scholar
  25. 25.
    J. Hader, J.V. Moloney, B. Pasenow, S.W. Koch, M. Sabathil, N. Linder, S. Lutgen, Appl. Phys. Lett. 92, 261103 (2008) ADSGoogle Scholar
  26. 26.
    K.T. Delaney, P. Rinke, C.G. Van de Walle, Appl. Phys. Lett. 94, 191109 (2009) ADSGoogle Scholar
  27. 27.
    B. Pasenow, S.W. Koch, J. Hader, J.V. Moloney, M. Sabathil, N. Linder, S. Lutgen, Phys. Status Solidi C 6, 864 (2009) ADSGoogle Scholar
  28. 28.
    J.-I. Shim, D.-S. Shin, H.-S. Kim, H.-Y. Ryu, J. Korean Phys. Soc. 58, 503 (2011) Google Scholar
  29. 29.
    D.-S. Shin, D.-P. Han, J.-Y. Oh, J.-I. Shim, Appl. Phys. Lett. 100, 153506 (2012) ADSGoogle Scholar
  30. 30.
    F. Bertazzi, M. Goano, E. Bellotti, Appl. Phys. Lett. 97, 231118 (2010) ADSGoogle Scholar
  31. 31.
    J. Piprek, Phys. Status Solidi A 207, 2217 (2010) ADSGoogle Scholar
  32. 32.
    S.Y. Karpov, Proc. SPIE 7939, 79391 (2011) ADSGoogle Scholar
  33. 33.
    M.H. Crawford, IEEE J. Sel. Top. Quantum Electron. 15, 1028 (2009) Google Scholar
  34. 34.
    D. Saguatti, L. Bidinelli, G. Verzellesi, M. Meneghini, G. Meneghesso, E. Zanoni, R. Butendeich, B. Hahn, IEEE Trans. Electron Devices 59, 1402 (2012) ADSGoogle Scholar
  35. 35.
    M. Zhang, P. Bhattacharya, J. Singh, J. Hinckley, Appl. Phys. Lett. 95, 201108 (2009) ADSGoogle Scholar
  36. 36.
    M. Meneghini, N. Trivellin, G. Meneghesso, E. Zanoni, U. Zehnder, B. Hahn, J. Appl. Phys. 106, 114508 (2009) ADSGoogle Scholar
  37. 37.
    Q. Dai, Q. Shan, J. Wang, S. Chhajed, J. Cho, E.F. Schubert, M.H. Crawford, D.D. Koleske, M.-H. Kim, Y. Park, Appl. Phys. Lett. 97, 133507 (2010) ADSGoogle Scholar
  38. 38.
    U. Özgur, H. Liu, X. Li, X. Ni, H. Morkoç, Proc. IEEE 98, 1180 (2010) Google Scholar
  39. 39.
    H.-Y. Ryu, H.-S. Kim, J.-I. Shim, Appl. Phys. Lett. 95, 081114 (2009) ADSGoogle Scholar
  40. 40.
    S.F. Chichibu, A. Uedono, T. Onuma, B.A. Haskell, A. Chakraborty, T. Koyama, P.T. Fini, S. Keller, S.P. DenBaars, J.S. Speck, U.K. Mishra, S. Nakamura, S. Yamaguchi, S. Kamiyama, H. Amano, I. Akasaki, J. Han, T. Sota, Nat. Mater. 5, 810 (2006) ADSGoogle Scholar
  41. 41.
    S.F. Chichibu, T. Sota, K. Wada, O. Brandt, K.H. Ploog, S.P. DenBaars, S. Nakamura, Phys. Status Solidi A 183, 91 (2001) ADSGoogle Scholar
  42. 42.
    K. Okamoto, A. Scherer, Y. Kawakami, Appl. Phys. Lett. 87, 161104 (2005) ADSGoogle Scholar
  43. 43.
    A. Kaneta, K. Okamoto, Y. Kawakami, S. Fujita, G. Marutsuki, Y. Narukawa, T. Mukai, Appl. Phys. Lett. 81, 4353 (2002) ADSGoogle Scholar
  44. 44.
    M.F. Schubert, S. Chhajed, J.K. Kim, E.F. Schubert, D.D. Koleske, M.H. Crawford, S.R. Lee, A.J. Fischer, G. Thaler, M.A. Banas, Appl. Phys. Lett. 91, 231114 (2007) ADSGoogle Scholar
  45. 45.
    M.F. Schubert, J. Xu, J.K. Kim, E.F. Schubert, M.H. Kim, S. Yoon, S.M. Lee, C. Sone, T. Sakong, Y. Park, Appl. Phys. Lett. 93, 041102 (2008) ADSGoogle Scholar
  46. 46.
    J. Xu, M.F. Schubert, A.N. Noemaun, D. Zhu, J.K. Kim, E.F. Schubert, M.H. Kim, H.J. Chung, S. Yoon, C. Sone, Y. Park, Appl. Phys. Lett. 94, 011113 (2009) ADSGoogle Scholar
  47. 47.
    S. Hwang, W.J. Ha, J.K. Kim, J. Xu, J. Cho, E.F. Schubert, Appl. Phys. Lett. 99, 181115 (2011) ADSGoogle Scholar
  48. 48.
    J. Lee, X. Li, X. Ni, U. Özgür, H. Morkoç, T. Paskova, G. Mulholland, K.R. Evans, Appl. Phys. Lett. 95, 201113 (2009) ADSGoogle Scholar
  49. 49.
    C.H. Wang, C.C. Ke, C.Y. Lee, S.P. Chang, W.T. Chang, J.C. Li, Z.Y. Li, H.C. Yang, H.C. Kuo, T.C. Lu, S.C. Wang, Appl. Phys. Lett. 97, 261103 (2010) ADSGoogle Scholar
  50. 50.
    Y.Y. Kudryk, A.V. Zinovchuk, Semicond. Sci. Technol. 26, 095007 (2011) ADSGoogle Scholar
  51. 51.
    Y.-K. Kuo, M.-C. Tsai, S.-H. Yen, T.-C. Hsu, Y.-J. Shen, IEEE J. Quantum Electron. 46, 1214 (2010) ADSGoogle Scholar
  52. 52.
    R.-M. Lin, M.-J. Lai, L.-B. Chang, C.-H. Huang, Appl. Phys. Lett. 97, 181108 (2010) ADSGoogle Scholar
  53. 53.
    C.-L. Chao, R. Xuan, H.-H. Yen, C.-H. Chiu, Y.-H. Fang, Z.-Y. Li, B.-C. Chen, C.-C. Lin, C.-H. Chiu, Y.-D. Guo, H.-C. Kuo, J.-F. Chen, S.-J. Cheng, IEEE Photonics Technol. Lett. 23, 798 (2011) ADSGoogle Scholar
  54. 54.
    C.H. Wang, S.P. Chang, W.T. Chang, J.C. Li, Y.S. Lu, Z.Y. Li, H.C. Yang, H.C. Kuo, T.C. Lu, S.C. Wang, Appl. Phys. Lett. 97, 181101 (2010) ADSGoogle Scholar
  55. 55.
    S. Tanaka, Y. Zhao, I. Koslow, C.-C. Pan, H.-T. Chen, J. Sonoda, S.P. DenBaars, S. Nakamura, IEE Electron. Lett. 47, 339 (2011) Google Scholar
  56. 56.
    Y.-J. Lee, C.-H. Chen, C.-J. Lee, IEEE Photonics Technol. Lett. 22, 1506 (2010) ADSGoogle Scholar
  57. 57.
    Y.-L. Li, Y.-R. Huang, Y.-H. Lai, IEEE J. Sel. Top. Quantum Electron. 15, 1128 (2009) Google Scholar
  58. 58.
    X. Ni, X. Li, J. Lee, S. Liu, V. Avrutin, Ü. Özgür, H. Morkoç, A. Matulionis, T. Paskova, G. Mulholland, K.R. Evans, Appl. Phys. Lett. 97, 031110 (2010) ADSGoogle Scholar
  59. 59.
    Y.B. Tao, S.Y. Wang, Z.Z. Chen, Z. Gong, E.Y. Xie, Y.J. Chen, Y.F. Zhang, J. McKendry, D. Massoubre, E.D. Gu, B.R. Rae, R.K. Henderson, G.Y. Zhang, Phys. Status Solidi C 9, 616 (2012) ADSGoogle Scholar
  60. 60.
    J.-I. Shim, D.-P. Han, H. Kim, D.-S. Shin, G.-B. Lin, D.S. Meyaard, Q. Shan, J. Cho, E.F. Schubert, H. Shim, C. Sone, Appl. Phys. Lett. 100, 111106 (2012) ADSGoogle Scholar
  61. 61.
    D.L. Huffaker, D.G. Deppe, Appl. Phys. Lett. 73, 520 (1998) ADSGoogle Scholar
  62. 62.
    A. Hori, D. Yasunaga, A. Satake, K. Fujiwara, J. Appl. Phys. 93, 3152 (2003) ADSGoogle Scholar
  63. 63.
    S. Chhajed, J. Cho, E.F. Schubert, J.K. Kim, D.D. Koleske, M.H. Crawford, Phys. Status Solidi A 208, 947 (2011) ADSGoogle Scholar
  64. 64.
    T.S. Jeong, C.J. Youn, M.S. Han, J.W. Yang, K.Y. Lim, J. Cryst. Growth 259, 267 (2003) ADSGoogle Scholar
  65. 65.
    M. lIegems, R. Dingle, J. Appl. Phys. 44, 4234 (1973) ADSGoogle Scholar
  66. 66.
    I. Akasaki, H. Amano, M. Kito, K. Hiramatsu, J. Lumin. 48 & 49, 666 (1991) Google Scholar
  67. 67.
    E. Oh, H. Park, Y. Park, Appl. Phys. Lett. 72, 70 (1998) ADSGoogle Scholar
  68. 68.
    J.P. Liu, J.-H. Ryou, R.D. Dupuis, J. Han, G.D. Shen, Appl. Phys. Lett. 93, 021102 (2008) ADSGoogle Scholar
  69. 69.
    K. Ding, Y.P. Zeng, X.C. Wei, Z.C. Li, J.X. Wang, H.X. Lu, P.P. Cong, X.Y. Yi, G.H. Wang, J.M. Li, Appl. Phys. B 97, 465 (2009) ADSGoogle Scholar
  70. 70.
    H.-Y. Ryu, J.-I. Shim, C.-H. Kim, J.H. Choi, H.M. Jung, M.-S. Noh, J.-M. Lee, E.-S. Nam, IEEE Photonics Technol. Lett. 23, 1866 (2011) ADSGoogle Scholar
  71. 71.
    S. Hammersley, D. Watson-Parris, P. Dawson, M.J. Godfrey, T.J. Badcock, J. Appl. Phys. 111, 083512 (2012) ADSGoogle Scholar
  72. 72.
    J.-W. Shi, C.-W. Lin, M.L. Lee, J.-K. Sheu, IEEE Photon. Technol. Lett. 23, 1585 (2011) ADSGoogle Scholar
  73. 73.
    A. David, M.J. Grundmann, Appl. Phys. Lett. 96, 103504 (2010) ADSGoogle Scholar
  74. 74.
    H. Kim, D.-P. Han, J.-Y. Oh, J.-I. Shim, J. Korean Phys. Soc. 60, 1934 (2012) ADSGoogle Scholar
  75. 75.
    G. Tamulaitis, J. Mickevičius, D. Dobrovolskas, E. Kuokštis, M.S. Shur, M. Shatalov, J. Yang, R. Gaska, Phys. Status Solidi C 9, 1677 (2012) ADSGoogle Scholar
  76. 76.
    M.F. Schubert, J. Xu, Q. Dai, F.W. Mont, J.K. Kim, E.F. Schubert, Appl. Phys. Lett. 94, 081114 (2009) ADSGoogle Scholar
  77. 77.
    G.H. Gu, C.G. Park, K.B. Nam, Phys. Status Solidi RRL 3, 100 (2009) Google Scholar
  78. 78.
    P.G. Eliseev, M. Osin’ski, H. Li, I.V. Akimova, Appl. Phys. Lett. 75, 3838 (1999) ADSGoogle Scholar
  79. 79.
    T. Miyoshi, T. Yanamoto, T. Kozaki, S.-i. Nagahama, Y. Narukawa, M. Sano, T. Yamada, T. Mukai, Proc. SPIE, 689414 (2008) Google Scholar
  80. 80.
    G. Chen, M. Craven, A. Kim, A. Munkholm, S. Watanabe, M. Camras, W. Götz, F. Steranka, Phys. Status Solidi A 205, 1086 (2008) ADSGoogle Scholar
  81. 81.
    Y. Narukawa, J. Narita, T. Sakamoto, T. Yamada, H. Narimatsu, M. Sano, T. Mukai, Phys. Status Solidi A 204, 2087 (2007) ADSGoogle Scholar
  82. 82.
    T. Fleck, M. Schmidt, C. Klingshirn, Phys. Status Solidi A 198, 248 (2003) ADSGoogle Scholar
  83. 83.
    H. Gauck, T.H. Gfroerer, M.J. Renn, E.A. Cornell, K.A. Bertness, Appl. Phys. A 64, 143 (1997) ADSGoogle Scholar
  84. 84.
    I. Schnitzer, E. Yablonovitch, C. Caneau, T.J. Gmitter, Appl. Phys. Lett. 62, 131 (1993) ADSGoogle Scholar
  85. 85.
    V. Zabelin, D.A. Zakheim, S.A. Gurevich, IEEE J. Quantum Electron. 40, 1675 (2004) ADSGoogle Scholar
  86. 86.
    R. Windisch, C. Rooman, B. Dutta, A. Knobloch, G. Borghs, G.H. Döhler, P. Heremans, IEEE J. Sel. Top. Quantum Electron. 8, 248 (2002) Google Scholar
  87. 87.
    S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, Appl. Phys. Lett. 69, 1568 (1996) ADSGoogle Scholar
  88. 88.
    H.Y. Ryu, K.H. Ha, J.H. Chae, K.S. Kim, J.K. Son, Appl. Phys. Lett. 89, 171106 (2006) ADSGoogle Scholar
  89. 89.
    S. Saito, T. Narita, K. Zaima, K. Tachibana, H. Nago, G.-I. Hatakoshi, S. Nunoue, Phys. Status Solidi C 5, 2195 (2008) ADSGoogle Scholar
  90. 90.
    Y. Kawakami, K. Omae, K. Okamoto, T. Izumi, S. Sauou, K. Inoue, Y. Narukawa, T. Mukai, Sg. Fujita, Phys. Status Solidi A 183, 41 (2001) ADSGoogle Scholar
  91. 91.
    S. Watanabe, N. Yamada, M. Nagashima, Y. Ueki, C. Sasaki, Appl. Phys. Lett. 83, 4906 (2003) ADSGoogle Scholar
  92. 92.
    S. Lahmann, F. Hitzel, U. Rossow, A. Hangleiter, Phys. Status Solidi C 0, 2202 (2003) Google Scholar
  93. 93.
    A. Hangleiter, D. Fuhrmann, M. Grewe, F. Hitzel, G. Klewer, S. Lahmann, C. Netzel, A. riedel, U. Rossow, Phys. Status Solidi A 201, 2808 (2004) ADSGoogle Scholar
  94. 94.
    D. Fuhrmann, T. Retzlaff, U. Rossow, H. Bremers, A. Hangleiter, Appl. Phys. Lett. 88, 191108 (2006) ADSGoogle Scholar
  95. 95.
    E.Y. Lin, C.Y. Chen, T.S. Lay, T.C. Wang, J.D. Tsay, P.X. Peng, T.Y. Lin, Phys. Status Solidi C 5, 2111 (2008) ADSGoogle Scholar
  96. 96.
    C. Netzel, R. Doloca, S. Lahmann, U. Rossow, A. Hangleiter, Phys. Status Solidi C 0, 324 (2002) Google Scholar
  97. 97.
    C. Netzel, S. Heppel, F. Hitzel, S. Miller, A. Weimar, G. Brüderl, H.J. Lugauer, A. Lell, V. Härle, A. Hangleiter, Phys. Status Solidi C 0, 2304 (2003) Google Scholar
  98. 98.
    M.S. Minsky, S. Watanabe, N. Yamada, J. Appl. Phys. 91, 5176 (2002) ADSGoogle Scholar
  99. 99.
    J.S. Hwang, A. Gokarna, Y.-H. Cho, J.K. Son, S.N. Lee, Appl. Phys. Lett. 90, 131908 (2007) ADSGoogle Scholar
  100. 100.
    J.S. Hwang, A. Gokarna, Y.-H. Cho, J.K. Son, S.N. Lee, J. Appl. Phys. 102, 013508 (2007) ADSGoogle Scholar
  101. 101.
    J.K. Son, S.N. Lee, H.S. Paek, T. Sakong, K.H. Ha, O.H. Nam, Y. Park, Phys. Status Solidi C 4, 2780 (2007) ADSGoogle Scholar
  102. 102.
    A. Reale, G. Massari, A.D. Carlo, P. Lugli, A. Vinattieri, J. Appl. Phys. 93, 400 (2003) ADSGoogle Scholar
  103. 103.
    R. Olshansky, C.B. Su, J. Manning, W. Powazinik, IEEE J. Quantum Electron. 20, 838 (1984) ADSGoogle Scholar
  104. 104.
    Y.J. Ding, C.L. Guo, J.B. Khurgin, K.K. Law, J.L. Merz, Appl. Phys. Lett. 60, 2051 (1992) ADSGoogle Scholar
  105. 105.
    J.-B. Wang, D. Ding, S.R. Johnson, S.-Q. Yu, Y.-H. Zhang, Phys. Status Solidi B 244, 2740 (2007) ADSGoogle Scholar
  106. 106.
    Q. Dai, M.F. Schubert, M.H. Kim, J.K. Kim, E.F. Schubert, D.D. Koleske, M.H. Crawford, S.R. Lee, A.J. Fischer, G. Thaler, M.A. Banas, Appl. Phys. Lett. 94, 111109 (2009) ADSGoogle Scholar
  107. 107.
    J.-I. Shim, B. Liu, J.E. Bowers, IEEE J. Quantum Electron. 40, 1622 (2004) ADSGoogle Scholar
  108. 108.
    C.-K. Sun, S. Keller, G. Wang, M.S. Minsky, J.E. Bowers, S.P. DenBaars, Appl. Phys. Lett. 69, 1936 (1996) ADSGoogle Scholar
  109. 109.
    C.-K. Sun, S. Keller, T.-L. Chiu, G. Wang, M.S. Minsky, J.E. Bowers, S.P. DenBaars, IEEE J. Sel. Top. Quantum Electron. 3, 731 (1997) Google Scholar
  110. 110.
    Y. Kawakami, Z.G. Peng, Y. Narukawa, S. Fujita, S. Fujita, Appl. Phys. Lett. 69, 1414 (1996) ADSGoogle Scholar
  111. 111.
    M.-Y. Ryu, C.Q. Chen, E. Kuokstis, J.W. Yang, G. Simin, Appl. Phys. Lett. 80, 3943 (2002) ADSGoogle Scholar
  112. 112.
    S.F. Chichibu, M. Suguyama, T. Onuma, T. Kitamura, H. Nakanishi, T. Kuroda, A. Takeuchi, T. Soda, Y. Ishida, H. Okumura, Appl. Phys. Lett. 79, 4319 (2001) ADSGoogle Scholar
  113. 113.
    H. Kim, D.-S. Shin, H.-Y. Ryu, J.-I. Shim, Jpn. J. Appl. Phys. 49, 112402 (2010) ADSGoogle Scholar
  114. 114.
    X.A. Cao, E.B. Stokes, P.M. Sandvik, S.F. LeBoeuf, J. Kretchmer, D. Walker, IEEE Electron Device Lett. 23, 535 (2002) ADSGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Hanyang University ERICA CampusAnsan, Gyeonggi-doKorea

Personalised recommendations