Cardiovascular Stem Cells

  • Christoph Brenner
  • Robert David
  • Wolfgang-Michael Franz


Ischemic disorders are the main cause of death in the Western world. With more patients surviving their acute myocardial infarction and an aging population, congestive heart failure is the rising health problem. At present, heart transplantation remains the only curative treatment for end stage heart failure. The discrepancy between demand and supply of donor organs does not fill the clinical need. This explains the huge effort made in the field of stem cell research trying to establish alternative resources for tissue replacement. In contrast to adult stem cells mainly acting in a paracrine fashion pluripotent stem cells have the potential to generate transplantable myocardial and vascular tissue.

Due to the low percentage of cardiovascular progenitor cells in pluripotent stem cell cultures, various approaches using exogenous factors aim for their amplification and purification in vitro. However, one future key technology may be genetic forward programming based on profound understanding of differentiation pathways in order to direct stem cell differentiation towards cardiovascular fates. In this regard, subtype specific programming has already been achieved by overexpression of distinct early cardiovascular transcription factors leading to populations of either predominantly early/intermediate type cardiomyocytes or differentiated ventricular myocardial cells, respectively.

In addition, techniques for gentle purification of myocardial and vascular progenitor cells will have to be further refined in order to enable the generation of highly specific, pure and safe cell populations for transplantations and for tissue engineering.


Enhanced Green Fluorescent Protein Pluripotent Stem Cell Cardiovascular Development Heart Field Biological Pacemaker 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Akins RE, Boyce RA, Madonna ML et al (1999) Cardiac organogenesis in vitro: reestablishment of three-dimensional tissue architecture by dissociated neonatal rat ventricular cells. Tissue Eng 5(2):103–118PubMedCrossRefGoogle Scholar
  2. Balsam LB, Wagers AJ, Christensen JL et al (2004) Haematopoietic stem cells adopt mature haematopoietic fates in ischaemic myocardium. Nature 428(6983):668–673PubMedCrossRefGoogle Scholar
  3. Bel A, Planat-Bernard V, Saito A et al (2010) Composite cell sheets: a further step toward safe and effective myocardial regeneration by cardiac progenitors derived from embryonic stem cells. Circulation 122(11 Suppl):S118–S123PubMedCrossRefGoogle Scholar
  4. Bondue A, Lapouge G, Paulissen C et al (2008) Mesp1 acts as a master regulator of multipotent cardiovascular progenitor specification. Cell Stem Cell 3(1):69–84PubMedCrossRefGoogle Scholar
  5. Boyle A, Colvin-Adams M (2004) Recipient selection and management. Semin Thorac Cardiovasc Surg 16(4):358–363PubMedCrossRefGoogle Scholar
  6. Buckingham M, Meilhac S, Zaffran S (2005) Building the mammalian heart from two sources of myocardial cells. Nat Rev Genet 6(11):826–835PubMedCrossRefGoogle Scholar
  7. David R, Groebner M, Franz WM (2005) Magnetic cell sorting purification of differentiated embryonic stem cells stably expressing truncated human CD4 as surface marker. Stem Cells 23(4):477–482PubMedCrossRefGoogle Scholar
  8. David R, Brenner C, Stieber J et al (2008a) MesP1 drives vertebrate cardiovascular differentiation through Dkk-1-mediated blockade of Wnt-signalling. Nat Cell Biol 10(3):338–345PubMedCrossRefGoogle Scholar
  9. David R, Theiss H, Franz WM (2008b) Connexin 40 promoter-based enrichment of embryonic stem cell-derived cardiovascular progenitor cells. Cells Tissues Organs 188(1–2):62–69PubMedCrossRefGoogle Scholar
  10. David R, Stieber J, Fischer E et al (2009) Forward programming of pluripotent stem cells towards distinct cardiovascular cell types. Cardiovasc Res 84(2):263–272PubMedCrossRefGoogle Scholar
  11. David R, Jarsch V, Schwarz F et al (2011) Induction of MesP1 by Brachyury(T) generates the common multipotent cardiovascular stem cell. Cardiovasc Res 92:115–122PubMedCrossRefGoogle Scholar
  12. Deindl E, Zaruba MM, Brunner S et al (2006) G-CSF administration after myocardial infarction in mice attenuates late ischemic cardiomyopathy by enhanced arteriogenesis. FASEB J 20(7):956–958PubMedCrossRefGoogle Scholar
  13. DESTATIS (2010) Cardiovascular diseases still leading cause of death in 2009. Press release from 18 Oct 2010, German Federal Statistical Office (371)Google Scholar
  14. Eisenberg LM, Eisenberg CA (2006) Wnt signal transduction and the formation of the myocardium. Dev Biol 293(2):305–315PubMedCrossRefGoogle Scholar
  15. Engelmann MG, Theiss HD, Theiss C et al (2009) G-CSF in patients suffering from late revascularised ST elevation myocardial infarction: final 1-year-results of the G-CSF-STEMI Trial. Int J Cardiol 144:399–404PubMedCrossRefGoogle Scholar
  16. Gassanov N, Er F, Zagidullin N et al (2004) Endothelin induces differentiation of ANP-EGFP expressing embryonic stem cells towards a pacemaker phenotype. FASEB J 18(14):1710–1712PubMedGoogle Scholar
  17. Gerecht-Nir S, David R, Zaruba M et al (2003) Human embryonic stem cells for cardiovascular repair. Cardiovasc Res 58(2):313–323CrossRefGoogle Scholar
  18. Graichen R, Xu X, Braam SR et al (2008) Enhanced cardiomyogenesis of human embryonic stem cells by a small molecular inhibitor of p38 MAPK. Differentiation 76(4):357–370PubMedCrossRefGoogle Scholar
  19. Grepin C, Nemer G, Nemer M (1997) Enhanced cardiogenesis in embryonic stem cells overexpressing the GATA-4 transcription factor. Development 124(12):2387–2395PubMedGoogle Scholar
  20. Hunt SA (1998) Current status of cardiac transplantation. JAMA 280(19):1692–1698PubMedCrossRefGoogle Scholar
  21. Kanno S, Kim PK, Sallam K et al (2004) Nitric oxide facilitates cardiomyogenesis in mouse embryonic stem cells. Proc Natl Acad Sci USA 101(33):12277–12281PubMedCrossRefGoogle Scholar
  22. Kattman SJ, Huber TL, Keller GM (2006) Multipotent flk-1+ cardiovascular progenitor cells give rise to the cardiomyocyte, endothelial, and vascular smooth muscle lineages. Dev Cell 11(5):723–732PubMedCrossRefGoogle Scholar
  23. Kelly RG, Brown NA, Buckingham ME (2001) The arterial pole of the mouse heart forms from Fgf10-expressing cells in pharyngeal mesoderm. Dev Cell 1(3):435–440PubMedCrossRefGoogle Scholar
  24. Kessler PD, Byrne BJ (1999) Myoblast cell grafting into heart muscle: cellular biology and potential applications. Annu Rev Physiol 61:219–242PubMedCrossRefGoogle Scholar
  25. Kitajima S, Takagi A, Inoue T et al (2000) MesP1 and MesP2 are essential for the development of cardiac mesoderm. Development 127(15):3215–3226PubMedGoogle Scholar
  26. Kleger A, Seufferlein T, Malan D et al (2010) Modulation of calcium-activated potassium channels induces cardiogenesis of pluripotent stem cells and enrichment of pacemaker-like cells. Circulation 122(18):1823–1836PubMedCrossRefGoogle Scholar
  27. Klug MG, Soonpaa MH, Koh GY et al (1996) Genetically selected cardiomyocytes from differentiating embronic stem cells form stable intracardiac grafts. J Clin Invest 98(1):216–224PubMedCrossRefGoogle Scholar
  28. Kolossov E, Lu Z, Drobinskaya I et al (2005) Identification and characterization of embryonic stem cell-derived pacemaker and atrial cardiomyocytes. FASEB J 19(6):577–579PubMedGoogle Scholar
  29. Kraehenbuehl TP, Ferreira LS, Hayward AM et al (2011) Human embryonic stem cell-derived microvascular grafts for cardiac tissue preservation after myocardial infarction. Biomaterials 32(4):1102–1109PubMedCrossRefGoogle Scholar
  30. Lam JT, Moretti A, Laugwitz KL (2009) Multipotent progenitor cells in regenerative cardiovascular medicine. Pediatr Cardiol 30(5):690–698PubMedCrossRefGoogle Scholar
  31. Larsen W (1998) Essentials of human embryology. Library of congress cataloging-in-publication data, 2nd edn. Churchill Livingstone, New YorkGoogle Scholar
  32. Laugwitz KL, Moretti A, Caron L et al (2008) Islet1 cardiovascular progenitors: a single source for heart lineages? Development 135(2):193–205PubMedCrossRefGoogle Scholar
  33. Leal J, Luengo-Fernandez R, Gray A et al (2006) Economic burden of cardiovascular diseases in the enlarged European Union. Eur Heart J 27(13):1610–1619PubMedCrossRefGoogle Scholar
  34. Lee MS, Makkar RR (2004) Stem-cell transplantation in myocardial infarction: a status report. Ann Intern Med 140(9):729–737PubMedGoogle Scholar
  35. Liao SY, Liu Y, Siu CW et al (2010) Proarrhythmic risk of embryonic stem cell-derived cardiomyocyte transplantation in infarcted myocardium. Heart Rhythm 7(12):1852–1859PubMedCrossRefGoogle Scholar
  36. Lin Q, Fu Q, Zhang Y et al (2010) Tumourigenesis in the infarcted rat heart is eliminated through differentiation and enrichment of the transplanted embryonic stem cells. Eur J Heart Fail 12(11):1179–1185PubMedCrossRefGoogle Scholar
  37. Lindsley RC, Gill JG, Murphy TL et al (2008) Mesp1 coordinately regulates cardiovascular fate restriction and epithelial-mesenchymal transition in differentiating ESCs. Cell Stem Cell 3(1):55–68PubMedCrossRefGoogle Scholar
  38. Liu HS, Jan MS, Chou CK et al (1999) Is green fluorescent protein toxic to the living cells? Biochem Biophys Res Commun 260(3):712–717PubMedCrossRefGoogle Scholar
  39. Lyons I, Parsons LM, Hartley L et al (1995) Myogenic and morphogenetic defects in the heart tubes of murine embryos lacking the homeo box gene Nkx2-5. Genes Dev 9(13):1654–1666PubMedCrossRefGoogle Scholar
  40. Maltsev VA, Rohwedel J, Hescheler J et al (1993) Embryonic stem cells differentiate in vitro into cardiomyocytes representing sinusnodal, atrial and ventricular cell types. Mech Dev 44(1):41–50PubMedCrossRefGoogle Scholar
  41. Meilhac SM, Esner M, Kelly RG et al (2004) The clonal origin of myocardial cells in different regions of the embryonic mouse heart. Dev Cell 6(5):685–698PubMedCrossRefGoogle Scholar
  42. Menasche P (2005) Skeletal myoblast for cell therapy. Coron Artery Dis 16(2):105–110PubMedCrossRefGoogle Scholar
  43. Menasche P, Hagege AA, Vilquin JT et al (2003) Autologous skeletal myoblast transplantation for severe postinfarction left ventricular dysfunction. J Am Coll Cardiol 41(7):1078–1083PubMedCrossRefGoogle Scholar
  44. Müller M, Fleischmann BK, Selbert S et al (2000) Selection of ventricular-like cardiomyocytes from ES cells in vitro. FASEB J 14(15):2540–2548PubMedCrossRefGoogle Scholar
  45. Mummery CL, Ward D and Passier R (2007) Differentiation of human embryonic stem cells to cardiomyocytes by coculture with endoderm in serum-free medium. Curr Protoc Stem Cell Biol Chapter 1: Unit 1F 2Google Scholar
  46. Murry CE, Soonpaa MH, Reinecke H et al (2004) Haematopoietic stem cells do not transdifferentiate into cardiac myocytes in myocardial infarcts. Nature 428(6983):664–668PubMedCrossRefGoogle Scholar
  47. Nelson TJ, Faustino RS, Chiriac A et al (2008) CXCR4+/FLK-1+ biomarkers select a cardiopoietic lineage from embryonic stem cells. Stem Cells 26(6):1464–1473PubMedCrossRefGoogle Scholar
  48. Neumayer HH (2005) Introducing everolimus (Certican) in organ transplantation: an overview of preclinical and early clinical developments. Transplantation 79(9 Suppl):S72–S75PubMedCrossRefGoogle Scholar
  49. Okano T, Yamada N, Okuhara M et al (1995) Mechanism of cell detachment from temperature-modulated, hydrophilic-hydrophobic polymer surfaces. Biomaterials 16(4):297–303PubMedCrossRefGoogle Scholar
  50. Orlic D, Kajstura J, Chimenti S et al (2001) Transplanted adult bone marrow cells repair myocardial infarcts in mice. Ann N Y Acad Sci 938:221–229; discussion 229–230PubMedCrossRefGoogle Scholar
  51. Paquin J, Danalache BA, Jankowski M et al (2002) Oxytocin induces differentiation of P19 embryonic stem cells to cardiomyocytes. Proc Natl Acad Sci USA 99(14):9550–9555PubMedCrossRefGoogle Scholar
  52. Potta SP, Liang H, Winkler J et al (2010) Isolation and functional characterization of alpha-smooth muscle actin expressing cardiomyocytes from embryonic stem cells. Cell Physiol Biochem 25(6):595–604PubMedCrossRefGoogle Scholar
  53. Roggia C, Ukena C, Bohm M et al (2006) Hepatocyte growth factor (HGF) enhances cardiac commitment of differentiating embryonic stem cells by activating PI3 kinase. Exp Cell Res 313:921–930PubMedCrossRefGoogle Scholar
  54. Sadler T (1998) Medizinische Embryologie – Die normale menschliche Entwicklung und ihre Fehlbildungen 11th edition, Thieme, Stuttgart, Germany, ISBN-10: 3134466112, ISBN-13 978-3134466119 (german)Google Scholar
  55. Saga Y, Miyagawa-Tomita S, Takagi A et al (1999) MesP1 is expressed in the heart precursor cells and required for the formation of a single heart tube. Development 126(15):3437–3447PubMedGoogle Scholar
  56. Saga Y, Kitajima S, Miyagawa-Tomita S (2000) Mesp1 expression is the earliest sign of cardiovascular development. Trends Cardiovasc Med 10(8):345–352PubMedCrossRefGoogle Scholar
  57. Schachinger V, Erbs S, Elsasser A et al (2006) Intracoronary bone marrow-derived progenitor cells in acute myocardial infarction. N Engl J Med 355(12):1210–1221PubMedCrossRefGoogle Scholar
  58. Shiba Y, Hauch KD, Laflamme MA (2009) Cardiac applications for human pluripotent stem cells. Curr Pharm Des 15(24):2791–2806PubMedCrossRefGoogle Scholar
  59. Singh AM, Li FQ, Hamazaki T, et al. (2007). Chibby, an Antagonist of the Wnt/{beta}-Catenin Pathway, Facilitates Cardiomyocyte Differentiation of Murine Embryonic Stem Cells. Circulation 115:617–626Google Scholar
  60. Singla DK, Long X, Glass C et al (2011) iPS cells repair and regenerate infarcted myocardium. Mol Pharm 8:1573–1581PubMedCrossRefGoogle Scholar
  61. Soonpaa MH, Koh GY, Klug MG et al (1994) Formation of nascent intercalated disks between grafted fetal cardiomyocytes and host myocardium. Science 264(5155):98–101PubMedCrossRefGoogle Scholar
  62. Srivastava D, Ivey KN (2006) Potential of stem-cell-based therapies for heart disease. Nature 441(7097):1097–1099PubMedCrossRefGoogle Scholar
  63. Strauer BE, Brehm M, Zeus T et al (2002) Repair of infarcted myocardium by autologous intracoronary mononuclear bone marrow cell transplantation in humans. Circulation 106(15):1913–1918PubMedCrossRefGoogle Scholar
  64. Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126(4):663–676PubMedCrossRefGoogle Scholar
  65. Takahashi T, Lord B, Schulze PC et al (2003) Ascorbic acid enhances differentiation of embryonic stem cells into cardiac myocytes. Circulation 107(14):1912–1916PubMedCrossRefGoogle Scholar
  66. Theiss HD, Brenner C, Engelmann MG et al (2010) Safety and efficacy of SITAgliptin plus GRanulocyte-colony-stimulating factor in patients suffering from acute myocardial infarction (SITAGRAMI-trial) – rationale, design and first interim analysis. Int J Cardiol 145(2):282–284PubMedCrossRefGoogle Scholar
  67. Tulloch NL, Muskheli V, Razumova MV et al (2011) Growth of engineered human myocardium with mechanical loading and vascular coculture. Circ Res 109(1):47–59PubMedCrossRefGoogle Scholar
  68. Ventura C, Maioli M, Asara Y et al (2004) Butyric and retinoic mixed ester of hyaluronan. A novel differentiating glycoconjugate affording a high throughput of cardiogenesis in embryonic stem cells. J Biol Chem 279(22):23574–23579PubMedCrossRefGoogle Scholar
  69. Ventura C, Maioli M, Asara Y et al (2005) Turning on stem cell cardiogenesis with extremely low frequency magnetic fields. FASEB J 19(1):155–157PubMedGoogle Scholar
  70. Wiese C, Nikolova T, Zahanich I et al (2011) Differentiation induction of mouse embryonic stem cells into sinus node-like cells by suramin. Int J Cardiol 147(1):95–111PubMedCrossRefGoogle Scholar
  71. Wobus AM, Kaomei G, Shan J et al (1997) Retinoic acid accelerates embryonic stem cell-derived cardiac differentiation and enhances development of ventricular cardiomyocytes. J Mol Cell Cardiol 29(6):1525–1539PubMedCrossRefGoogle Scholar
  72. Wollert KC, Meyer GP, Lotz J et al (2004) Intracoronary autologous bone-marrow cell transfer after myocardial infarction: the BOOST randomised controlled clinical trial. Lancet 364(9429):141–148PubMedCrossRefGoogle Scholar
  73. Wu SM (2008) Mesp1 at the heart of mesoderm lineage specification. Cell Stem Cell 3(1):1–2PubMedCrossRefGoogle Scholar
  74. Xu XQ, Graichen R, Soo SY et al (2008) Chemically defined medium supporting cardiomyocyte differentiation of human embryonic stem cells. Differentiation 76(9):958–970PubMedGoogle Scholar
  75. Yamanaka S (2007) Strategies and new developments in the generation of patient-specific pluripotent stem cells. Cell Stem Cell 1(1):39–49PubMedCrossRefGoogle Scholar
  76. Yuasa S, Itabashi Y, Koshimizu U et al (2005) Transient inhibition of BMP signaling by Noggin induces cardiomyocyte differentiation of mouse embryonic stem cells. Nat Biotechnol 23(5):607–611PubMedCrossRefGoogle Scholar
  77. Zaffran S, Kelly RG, Meilhac SM et al (2004) Right ventricular myocardium derives from the anterior heart field. Circ Res 95(3):261–268PubMedCrossRefGoogle Scholar
  78. Zandstra PW, Bauwens C, Yin T et al (2003) Scalable production of embryonic stem cell-derived cardiomyocytes. Tissue Eng 9(4):767–778PubMedCrossRefGoogle Scholar
  79. Zaruba MM, Theiss HD, Vallaster M et al (2009) Synergy between CD26/DPP-IV inhibition and G-CSF improves cardiac function after acute myocardial infarction. Cell Stem Cell 4(4):313–323PubMedCrossRefGoogle Scholar
  80. Zimmermann WH, Cesnjevar R (2009) Cardiac tissue engineering: implications for pediatric heart surgery. Pediatr Cardiol 30(5):716–723PubMedCrossRefGoogle Scholar
  81. Zweigerdt R, Burg M, Willbold E et al (2003) Generation of confluent cardiomyocyte monolayers derived from embryonic stem cells in suspension: a cell source for new therapies and screening strategies. Cytotherapy 5(5):399–413PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Christoph Brenner
    • 1
  • Robert David
    • 1
  • Wolfgang-Michael Franz
    • 1
  1. 1.Department of Internal Medicine IUniversity of Munich – Campus GrosshadernMunichGermany

Personalised recommendations