Skip to main content

Cardiovascular Stem Cells

  • Chapter
  • First Online:
Regenerative Medicine

Abstract

Ischemic disorders are the main cause of death in the Western world. With more patients surviving their acute myocardial infarction and an aging population, congestive heart failure is the rising health problem. At present, heart transplantation remains the only curative treatment for end stage heart failure. The discrepancy between demand and supply of donor organs does not fill the clinical need. This explains the huge effort made in the field of stem cell research trying to establish alternative resources for tissue replacement. In contrast to adult stem cells mainly acting in a paracrine fashion pluripotent stem cells have the potential to generate transplantable myocardial and vascular tissue.

Due to the low percentage of cardiovascular progenitor cells in pluripotent stem cell cultures, various approaches using exogenous factors aim for their amplification and purification in vitro. However, one future key technology may be genetic forward programming based on profound understanding of differentiation pathways in order to direct stem cell differentiation towards cardiovascular fates. In this regard, subtype specific programming has already been achieved by overexpression of distinct early cardiovascular transcription factors leading to populations of either predominantly early/intermediate type cardiomyocytes or differentiated ventricular myocardial cells, respectively.

In addition, techniques for gentle purification of myocardial and vascular progenitor cells will have to be further refined in order to enable the generation of highly specific, pure and safe cell populations for transplantations and for tissue engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akins RE, Boyce RA, Madonna ML et al (1999) Cardiac organogenesis in vitro: reestablishment of three-dimensional tissue architecture by dissociated neonatal rat ventricular cells. Tissue Eng 5(2):103–118

    Article  PubMed  CAS  Google Scholar 

  • Balsam LB, Wagers AJ, Christensen JL et al (2004) Haematopoietic stem cells adopt mature haematopoietic fates in ischaemic myocardium. Nature 428(6983):668–673

    Article  PubMed  CAS  Google Scholar 

  • Bel A, Planat-Bernard V, Saito A et al (2010) Composite cell sheets: a further step toward safe and effective myocardial regeneration by cardiac progenitors derived from embryonic stem cells. Circulation 122(11 Suppl):S118–S123

    Article  PubMed  Google Scholar 

  • Bondue A, Lapouge G, Paulissen C et al (2008) Mesp1 acts as a master regulator of multipotent cardiovascular progenitor specification. Cell Stem Cell 3(1):69–84

    Article  PubMed  CAS  Google Scholar 

  • Boyle A, Colvin-Adams M (2004) Recipient selection and management. Semin Thorac Cardiovasc Surg 16(4):358–363

    Article  PubMed  Google Scholar 

  • Buckingham M, Meilhac S, Zaffran S (2005) Building the mammalian heart from two sources of myocardial cells. Nat Rev Genet 6(11):826–835

    Article  PubMed  CAS  Google Scholar 

  • David R, Groebner M, Franz WM (2005) Magnetic cell sorting purification of differentiated embryonic stem cells stably expressing truncated human CD4 as surface marker. Stem Cells 23(4):477–482

    Article  PubMed  CAS  Google Scholar 

  • David R, Brenner C, Stieber J et al (2008a) MesP1 drives vertebrate cardiovascular differentiation through Dkk-1-mediated blockade of Wnt-signalling. Nat Cell Biol 10(3):338–345

    Article  PubMed  CAS  Google Scholar 

  • David R, Theiss H, Franz WM (2008b) Connexin 40 promoter-based enrichment of embryonic stem cell-derived cardiovascular progenitor cells. Cells Tissues Organs 188(1–2):62–69

    Article  PubMed  CAS  Google Scholar 

  • David R, Stieber J, Fischer E et al (2009) Forward programming of pluripotent stem cells towards distinct cardiovascular cell types. Cardiovasc Res 84(2):263–272

    Article  PubMed  CAS  Google Scholar 

  • David R, Jarsch V, Schwarz F et al (2011) Induction of MesP1 by Brachyury(T) generates the common multipotent cardiovascular stem cell. Cardiovasc Res 92:115–122

    Article  PubMed  CAS  Google Scholar 

  • Deindl E, Zaruba MM, Brunner S et al (2006) G-CSF administration after myocardial infarction in mice attenuates late ischemic cardiomyopathy by enhanced arteriogenesis. FASEB J 20(7):956–958

    Article  PubMed  CAS  Google Scholar 

  • DESTATIS (2010) Cardiovascular diseases still leading cause of death in 2009. Press release from 18 Oct 2010, German Federal Statistical Office (371)

    Google Scholar 

  • Eisenberg LM, Eisenberg CA (2006) Wnt signal transduction and the formation of the myocardium. Dev Biol 293(2):305–315

    Article  PubMed  CAS  Google Scholar 

  • Engelmann MG, Theiss HD, Theiss C et al (2009) G-CSF in patients suffering from late revascularised ST elevation myocardial infarction: final 1-year-results of the G-CSF-STEMI Trial. Int J Cardiol 144:399–404

    Article  PubMed  Google Scholar 

  • Gassanov N, Er F, Zagidullin N et al (2004) Endothelin induces differentiation of ANP-EGFP expressing embryonic stem cells towards a pacemaker phenotype. FASEB J 18(14):1710–1712

    PubMed  CAS  Google Scholar 

  • Gerecht-Nir S, David R, Zaruba M et al (2003) Human embryonic stem cells for cardiovascular repair. Cardiovasc Res 58(2):313–323

    Article  Google Scholar 

  • Graichen R, Xu X, Braam SR et al (2008) Enhanced cardiomyogenesis of human embryonic stem cells by a small molecular inhibitor of p38 MAPK. Differentiation 76(4):357–370

    Article  PubMed  CAS  Google Scholar 

  • Grepin C, Nemer G, Nemer M (1997) Enhanced cardiogenesis in embryonic stem cells overexpressing the GATA-4 transcription factor. Development 124(12):2387–2395

    PubMed  CAS  Google Scholar 

  • Hunt SA (1998) Current status of cardiac transplantation. JAMA 280(19):1692–1698

    Article  PubMed  CAS  Google Scholar 

  • Kanno S, Kim PK, Sallam K et al (2004) Nitric oxide facilitates cardiomyogenesis in mouse embryonic stem cells. Proc Natl Acad Sci USA 101(33):12277–12281

    Article  PubMed  CAS  Google Scholar 

  • Kattman SJ, Huber TL, Keller GM (2006) Multipotent flk-1+ cardiovascular progenitor cells give rise to the cardiomyocyte, endothelial, and vascular smooth muscle lineages. Dev Cell 11(5):723–732

    Article  PubMed  CAS  Google Scholar 

  • Kelly RG, Brown NA, Buckingham ME (2001) The arterial pole of the mouse heart forms from Fgf10-expressing cells in pharyngeal mesoderm. Dev Cell 1(3):435–440

    Article  PubMed  CAS  Google Scholar 

  • Kessler PD, Byrne BJ (1999) Myoblast cell grafting into heart muscle: cellular biology and potential applications. Annu Rev Physiol 61:219–242

    Article  PubMed  CAS  Google Scholar 

  • Kitajima S, Takagi A, Inoue T et al (2000) MesP1 and MesP2 are essential for the development of cardiac mesoderm. Development 127(15):3215–3226

    PubMed  CAS  Google Scholar 

  • Kleger A, Seufferlein T, Malan D et al (2010) Modulation of calcium-activated potassium channels induces cardiogenesis of pluripotent stem cells and enrichment of pacemaker-like cells. Circulation 122(18):1823–1836

    Article  PubMed  CAS  Google Scholar 

  • Klug MG, Soonpaa MH, Koh GY et al (1996) Genetically selected cardiomyocytes from differentiating embronic stem cells form stable intracardiac grafts. J Clin Invest 98(1):216–224

    Article  PubMed  CAS  Google Scholar 

  • Kolossov E, Lu Z, Drobinskaya I et al (2005) Identification and characterization of embryonic stem cell-derived pacemaker and atrial cardiomyocytes. FASEB J 19(6):577–579

    PubMed  CAS  Google Scholar 

  • Kraehenbuehl TP, Ferreira LS, Hayward AM et al (2011) Human embryonic stem cell-derived microvascular grafts for cardiac tissue preservation after myocardial infarction. Biomaterials 32(4):1102–1109

    Article  PubMed  CAS  Google Scholar 

  • Lam JT, Moretti A, Laugwitz KL (2009) Multipotent progenitor cells in regenerative cardiovascular medicine. Pediatr Cardiol 30(5):690–698

    Article  PubMed  Google Scholar 

  • Larsen W (1998) Essentials of human embryology. Library of congress cataloging-in-publication data, 2nd edn. Churchill Livingstone, New York

    Google Scholar 

  • Laugwitz KL, Moretti A, Caron L et al (2008) Islet1 cardiovascular progenitors: a single source for heart lineages? Development 135(2):193–205

    Article  PubMed  CAS  Google Scholar 

  • Leal J, Luengo-Fernandez R, Gray A et al (2006) Economic burden of cardiovascular diseases in the enlarged European Union. Eur Heart J 27(13):1610–1619

    Article  PubMed  Google Scholar 

  • Lee MS, Makkar RR (2004) Stem-cell transplantation in myocardial infarction: a status report. Ann Intern Med 140(9):729–737

    PubMed  Google Scholar 

  • Liao SY, Liu Y, Siu CW et al (2010) Proarrhythmic risk of embryonic stem cell-derived cardiomyocyte transplantation in infarcted myocardium. Heart Rhythm 7(12):1852–1859

    Article  PubMed  Google Scholar 

  • Lin Q, Fu Q, Zhang Y et al (2010) Tumourigenesis in the infarcted rat heart is eliminated through differentiation and enrichment of the transplanted embryonic stem cells. Eur J Heart Fail 12(11):1179–1185

    Article  PubMed  CAS  Google Scholar 

  • Lindsley RC, Gill JG, Murphy TL et al (2008) Mesp1 coordinately regulates cardiovascular fate restriction and epithelial-mesenchymal transition in differentiating ESCs. Cell Stem Cell 3(1):55–68

    Article  PubMed  CAS  Google Scholar 

  • Liu HS, Jan MS, Chou CK et al (1999) Is green fluorescent protein toxic to the living cells? Biochem Biophys Res Commun 260(3):712–717

    Article  PubMed  CAS  Google Scholar 

  • Lyons I, Parsons LM, Hartley L et al (1995) Myogenic and morphogenetic defects in the heart tubes of murine embryos lacking the homeo box gene Nkx2-5. Genes Dev 9(13):1654–1666

    Article  PubMed  CAS  Google Scholar 

  • Maltsev VA, Rohwedel J, Hescheler J et al (1993) Embryonic stem cells differentiate in vitro into cardiomyocytes representing sinusnodal, atrial and ventricular cell types. Mech Dev 44(1):41–50

    Article  PubMed  CAS  Google Scholar 

  • Meilhac SM, Esner M, Kelly RG et al (2004) The clonal origin of myocardial cells in different regions of the embryonic mouse heart. Dev Cell 6(5):685–698

    Article  PubMed  CAS  Google Scholar 

  • Menasche P (2005) Skeletal myoblast for cell therapy. Coron Artery Dis 16(2):105–110

    Article  PubMed  Google Scholar 

  • Menasche P, Hagege AA, Vilquin JT et al (2003) Autologous skeletal myoblast transplantation for severe postinfarction left ventricular dysfunction. J Am Coll Cardiol 41(7):1078–1083

    Article  PubMed  Google Scholar 

  • Müller M, Fleischmann BK, Selbert S et al (2000) Selection of ventricular-like cardiomyocytes from ES cells in vitro. FASEB J 14(15):2540–2548

    Article  PubMed  Google Scholar 

  • Mummery CL, Ward D and Passier R (2007) Differentiation of human embryonic stem cells to cardiomyocytes by coculture with endoderm in serum-free medium. Curr Protoc Stem Cell Biol Chapter 1: Unit 1F 2

    Google Scholar 

  • Murry CE, Soonpaa MH, Reinecke H et al (2004) Haematopoietic stem cells do not transdifferentiate into cardiac myocytes in myocardial infarcts. Nature 428(6983):664–668

    Article  PubMed  CAS  Google Scholar 

  • Nelson TJ, Faustino RS, Chiriac A et al (2008) CXCR4+/FLK-1+ biomarkers select a cardiopoietic lineage from embryonic stem cells. Stem Cells 26(6):1464–1473

    Article  PubMed  CAS  Google Scholar 

  • Neumayer HH (2005) Introducing everolimus (Certican) in organ transplantation: an overview of preclinical and early clinical developments. Transplantation 79(9 Suppl):S72–S75

    Article  PubMed  CAS  Google Scholar 

  • Okano T, Yamada N, Okuhara M et al (1995) Mechanism of cell detachment from temperature-modulated, hydrophilic-hydrophobic polymer surfaces. Biomaterials 16(4):297–303

    Article  PubMed  CAS  Google Scholar 

  • Orlic D, Kajstura J, Chimenti S et al (2001) Transplanted adult bone marrow cells repair myocardial infarcts in mice. Ann N Y Acad Sci 938:221–229; discussion 229–230

    Article  PubMed  CAS  Google Scholar 

  • Paquin J, Danalache BA, Jankowski M et al (2002) Oxytocin induces differentiation of P19 embryonic stem cells to cardiomyocytes. Proc Natl Acad Sci USA 99(14):9550–9555

    Article  PubMed  CAS  Google Scholar 

  • Potta SP, Liang H, Winkler J et al (2010) Isolation and functional characterization of alpha-smooth muscle actin expressing cardiomyocytes from embryonic stem cells. Cell Physiol Biochem 25(6):595–604

    Article  PubMed  CAS  Google Scholar 

  • Roggia C, Ukena C, Bohm M et al (2006) Hepatocyte growth factor (HGF) enhances cardiac commitment of differentiating embryonic stem cells by activating PI3 kinase. Exp Cell Res 313:921–930

    Article  PubMed  Google Scholar 

  • Sadler T (1998) Medizinische Embryologie – Die normale menschliche Entwicklung und ihre Fehlbildungen 11th edition, Thieme, Stuttgart, Germany, ISBN-10: 3134466112, ISBN-13 978-3134466119 (german)

    Google Scholar 

  • Saga Y, Miyagawa-Tomita S, Takagi A et al (1999) MesP1 is expressed in the heart precursor cells and required for the formation of a single heart tube. Development 126(15):3437–3447

    PubMed  CAS  Google Scholar 

  • Saga Y, Kitajima S, Miyagawa-Tomita S (2000) Mesp1 expression is the earliest sign of cardiovascular development. Trends Cardiovasc Med 10(8):345–352

    Article  PubMed  CAS  Google Scholar 

  • Schachinger V, Erbs S, Elsasser A et al (2006) Intracoronary bone marrow-derived progenitor cells in acute myocardial infarction. N Engl J Med 355(12):1210–1221

    Article  PubMed  CAS  Google Scholar 

  • Shiba Y, Hauch KD, Laflamme MA (2009) Cardiac applications for human pluripotent stem cells. Curr Pharm Des 15(24):2791–2806

    Article  PubMed  CAS  Google Scholar 

  • Singh AM, Li FQ, Hamazaki T, et al. (2007). Chibby, an Antagonist of the Wnt/{beta}-Catenin Pathway, Facilitates Cardiomyocyte Differentiation of Murine Embryonic Stem Cells. Circulation 115:617–626

    Google Scholar 

  • Singla DK, Long X, Glass C et al (2011) iPS cells repair and regenerate infarcted myocardium. Mol Pharm 8:1573–1581

    Article  PubMed  CAS  Google Scholar 

  • Soonpaa MH, Koh GY, Klug MG et al (1994) Formation of nascent intercalated disks between grafted fetal cardiomyocytes and host myocardium. Science 264(5155):98–101

    Article  PubMed  CAS  Google Scholar 

  • Srivastava D, Ivey KN (2006) Potential of stem-cell-based therapies for heart disease. Nature 441(7097):1097–1099

    Article  PubMed  CAS  Google Scholar 

  • Strauer BE, Brehm M, Zeus T et al (2002) Repair of infarcted myocardium by autologous intracoronary mononuclear bone marrow cell transplantation in humans. Circulation 106(15):1913–1918

    Article  PubMed  Google Scholar 

  • Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126(4):663–676

    Article  PubMed  CAS  Google Scholar 

  • Takahashi T, Lord B, Schulze PC et al (2003) Ascorbic acid enhances differentiation of embryonic stem cells into cardiac myocytes. Circulation 107(14):1912–1916

    Article  PubMed  CAS  Google Scholar 

  • Theiss HD, Brenner C, Engelmann MG et al (2010) Safety and efficacy of SITAgliptin plus GRanulocyte-colony-stimulating factor in patients suffering from acute myocardial infarction (SITAGRAMI-trial) – rationale, design and first interim analysis. Int J Cardiol 145(2):282–284

    Article  PubMed  Google Scholar 

  • Tulloch NL, Muskheli V, Razumova MV et al (2011) Growth of engineered human myocardium with mechanical loading and vascular coculture. Circ Res 109(1):47–59

    Article  PubMed  CAS  Google Scholar 

  • Ventura C, Maioli M, Asara Y et al (2004) Butyric and retinoic mixed ester of hyaluronan. A novel differentiating glycoconjugate affording a high throughput of cardiogenesis in embryonic stem cells. J Biol Chem 279(22):23574–23579

    Article  PubMed  CAS  Google Scholar 

  • Ventura C, Maioli M, Asara Y et al (2005) Turning on stem cell cardiogenesis with extremely low frequency magnetic fields. FASEB J 19(1):155–157

    PubMed  CAS  Google Scholar 

  • Wiese C, Nikolova T, Zahanich I et al (2011) Differentiation induction of mouse embryonic stem cells into sinus node-like cells by suramin. Int J Cardiol 147(1):95–111

    Article  PubMed  Google Scholar 

  • Wobus AM, Kaomei G, Shan J et al (1997) Retinoic acid accelerates embryonic stem cell-derived cardiac differentiation and enhances development of ventricular cardiomyocytes. J Mol Cell Cardiol 29(6):1525–1539

    Article  PubMed  CAS  Google Scholar 

  • Wollert KC, Meyer GP, Lotz J et al (2004) Intracoronary autologous bone-marrow cell transfer after myocardial infarction: the BOOST randomised controlled clinical trial. Lancet 364(9429):141–148

    Article  PubMed  Google Scholar 

  • Wu SM (2008) Mesp1 at the heart of mesoderm lineage specification. Cell Stem Cell 3(1):1–2

    Article  PubMed  CAS  Google Scholar 

  • Xu XQ, Graichen R, Soo SY et al (2008) Chemically defined medium supporting cardiomyocyte differentiation of human embryonic stem cells. Differentiation 76(9):958–970

    PubMed  CAS  Google Scholar 

  • Yamanaka S (2007) Strategies and new developments in the generation of patient-specific pluripotent stem cells. Cell Stem Cell 1(1):39–49

    Article  PubMed  CAS  Google Scholar 

  • Yuasa S, Itabashi Y, Koshimizu U et al (2005) Transient inhibition of BMP signaling by Noggin induces cardiomyocyte differentiation of mouse embryonic stem cells. Nat Biotechnol 23(5):607–611

    Article  PubMed  CAS  Google Scholar 

  • Zaffran S, Kelly RG, Meilhac SM et al (2004) Right ventricular myocardium derives from the anterior heart field. Circ Res 95(3):261–268

    Article  PubMed  CAS  Google Scholar 

  • Zandstra PW, Bauwens C, Yin T et al (2003) Scalable production of embryonic stem cell-derived cardiomyocytes. Tissue Eng 9(4):767–778

    Article  PubMed  CAS  Google Scholar 

  • Zaruba MM, Theiss HD, Vallaster M et al (2009) Synergy between CD26/DPP-IV inhibition and G-CSF improves cardiac function after acute myocardial infarction. Cell Stem Cell 4(4):313–323

    Article  PubMed  CAS  Google Scholar 

  • Zimmermann WH, Cesnjevar R (2009) Cardiac tissue engineering: implications for pediatric heart surgery. Pediatr Cardiol 30(5):716–723

    Article  PubMed  Google Scholar 

  • Zweigerdt R, Burg M, Willbold E et al (2003) Generation of confluent cardiomyocyte monolayers derived from embryonic stem cells in suspension: a cell source for new therapies and screening strategies. Cytotherapy 5(5):399–413

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfgang-Michael Franz M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Brenner, C., David, R., Franz, WM. (2013). Cardiovascular Stem Cells. In: Steinhoff, G. (eds) Regenerative Medicine. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5690-8_11

Download citation

Publish with us

Policies and ethics