Skip to main content

Hydrologic Connectivity of Landscapes and Implications for Forest Restoration

  • Chapter
  • First Online:
Forest Landscape Restoration

Part of the book series: World Forests ((WFSE,volume 15))

Abstract

Streams interact with the landscape through flooding events, erosion, and deposition processes and provide valuable subsidies to riparian zones. Meanwhile, the cumulative effects of disturbances and land use practices within a watershed affect water resources downstream. Forests have long been acclaimed for their rain-bringing capacity and ability to purify water resources. However, less well recognized is the linkage between a forest and increased evapotranspiration and thus lower water yield. Often a critical step to successfully restoring streams and riparian zones is to recreate the hydrological connectivity including a site-specific, realistic flooding regime. Integration of local citizens with land managers and conservationists greatly enhances the potential for long-term success of restoration activities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

OM:

organic matter

DOC:

dissolved organic carbon

POC:

particulate organic carbon

NPP:

net primary productivity

ANPP:

aboveground net primary productivity

CRNWR:

Cache River National Wildlife Refuge

NTU:

nephelometric turbidity units

N:

nitrogen

P:

phosphorus

NOx :

nitrate plus nitrite

TN:

total nitrogen

OC:

organic carbon

References

  • Alabyan AM, Chalov RS (1998) Types of river channel patterns and their natural controls. Earth Surf Process Landf 23:467–474

    Article  Google Scholar 

  • Allan JD (2004) Landscapes and riverscapes: the influence of land use on stream ecosystems. Annu Rev Ecol Syst 35:257–284

    Article  Google Scholar 

  • Allen AE, Santana-Michel SJ, Arrona CO et al (2010) Integrating ecological and ethnobotanical priorities into riparian restoration. Ecol Restor 28(3):377–388

    Article  Google Scholar 

  • Amoros C, Bornette G (2002) Connectivity and biocomplexity in waterbodies of riverine floodplains. Freshw Biol 477:61–776

    Google Scholar 

  • Anderson CJ, Mitsch WJ (2008) Influence of flood connectivity on bottomland hardwood forest productivity in central Ohio. Ohio J Sci 108(2):2–8

    Google Scholar 

  • Andréassian V (2004) Waters and forests: from historical controversy to scientific debate. J Hydrol 291:1–27

    Article  Google Scholar 

  • Austin BJ, Strauss EA (2011) Nitrification and denitrification response to varying periods of desiccation and inundation in a western Kansas stream. Hydrobiology 658:183–195

    Article  CAS  Google Scholar 

  • Baldwin DS, Mitchell AM (2000) The effects of drying and re-flooding on the sediment and soil nutrient dynamics of lowland river-floodplain systems: a synthesis. Regul Rivers Res Manag 16:457–467

    Article  Google Scholar 

  • Bayley PB (1995) Understanding large river-floodplain ecosystems. BioScience 45(3):153–158

    Article  Google Scholar 

  • Binkley D, Brown TC (1993) Management impacts on water quality of forests and rangelands. General Technical Report RM-239. U.S. Department of Agriculture Forest Service, Rocky Mountain Forest and Range Experiment Station, Fort Collins, CO

    Google Scholar 

  • Bolstad PV, Swank WT (1997) Cumulative impacts of land use on water quality in a southern Appalachian watershed. J Am Water Resour 33:519–533

    Article  CAS  Google Scholar 

  • Bosch JM, Hewlett JD (1982) A review of catchment experiments to determine the effect of vegetation changes on water yield and evapotranspiration. J Hydrol 55:3–23

    Article  Google Scholar 

  • Brinson M, Verhoeven J (1999) Riparian forests. In: Hunter ML (ed) Maintaining biodiversity in forest ecosystems. Cambridge University Press, Cambridge

    Google Scholar 

  • Brooks KN, Ffolliott PF, Gregersen HM et al (2003) Hydrology and the management of watersheds, 3rd edn. Blackwell Publishing, Ames

    Google Scholar 

  • Bruijnzeel LA (2004) Hydrological functions of tropical forests: not seeing the soil for the trees? Agric Ecosyst Environ 104:185–228

    Article  Google Scholar 

  • Calder I, Amezaga J, Aylward B et al (2004) Forests and water policies. The need to reconcile public and science perspectives. Geol Acta 2(2):157–166

    Google Scholar 

  • Chazdon RL (2008) Beyond deforestation: restoring forests and ecosystem services on degraded lands. Science 320:1458–1460

    Article  PubMed  CAS  Google Scholar 

  • Chesapeake Bay Program (2009) Bay restoration. http://www.chesapeakebay.net/bayrestoration.aspx?menuitem=13989. Accessed 13 July 2009

  • Clawson RG, Lockaby BG, Rummer B (2001) Changes in production and nutrient cycling across a wetness gradient within a floodplain forest. Ecosystem 4:126–138

    Article  Google Scholar 

  • Conner WH, Day JW Jr (1976) Productivity and composition of a baldcypress-water tupelo site and a bottomland hardwood site in a Louisiana swamp. Am J Bot 63:1354–1364

    Article  Google Scholar 

  • de la Crétaz AL, Barten PK (2007) Land use effects on streamflow and water quality in the Northeastern United States. CRC Press, Boca Raton

    Google Scholar 

  • DellaSala DA, Martin A, Spivak R et al (2003) A citizen’s call for ecological forest restoration: forest restoration principles and criteria. Ecol Restor 21(1):14–23

    Article  Google Scholar 

  • Douglass JE, Swank WT (1972) Streamflow modification through management of eastern forests. USDA Forest Service Research Paper: SE-94, Asheville, NC

    Google Scholar 

  • Downs PW, Kondolf GM (2002) Post-project appraisals in adaptive management of river channel restoration. Environ Manag 29(4):477–496

    Article  Google Scholar 

  • Farley KA, Jobbágy EG, Jackson RB (2005) Effects of afforestation on water yield: a global synthesis with implications for policy. Glob Change Biol 11:1565–1576

    Article  Google Scholar 

  • Fisher DS, Steiner JL, Endale DM et al (2000) The relationship of land use practices to surface water quality in the Upper Oconee watershed of Georgia. For Ecol Manag 128:39–48

    Article  Google Scholar 

  • Ford CR, Laseter SH, Swank WT et al (2011) Can forest management be used to sustain water-based ecosystem services in the face of climate change? Ecol Appl 21(6):2049–2067

    Article  PubMed  Google Scholar 

  • Forest Guild (2009) Forest Guild success stories. http://www.forestguild.org/success.html . Accessed 7 July 2009

  • Gergel SE, Dixon MD, Turner MG (2002) Consequences of human-altered floods: levees, floods, and floodplain forests along the Wisconsin River. Ecol Appl 12(6):1755–1770

    Article  Google Scholar 

  • Glazebrook HS, Robertson AI (1999) The effect of flooding and flood timing on leaf litter breakdown rates and nutrient dynamics in a river red gum (Eucalyptus camaldulensis) forest. Austr J Ecol 24:625–635

    Article  Google Scholar 

  • Groffman PM, Blain DJ, Band LE et al (2003) Down by the riverside: urban riparian ecology. Front Ecol Environ 1(6):315–321

    Article  Google Scholar 

  • Groves T, Hondorp C (2007) Low impact development: concepts and considerations. http://www.michiganlakeinfo.com/PermaLink,guid,6a215927-af04-4263-8484-21eb4f3810be.aspx. Accessed 15 July 2009

  • Hibbert AR (1967) Forest treatment effects on water yield. In: Sopper WE, Hull HW (eds) Forest hydrology: proceedings of a National Science Foundation advanced science. Pergamon Press, New York

    Google Scholar 

  • Holl KD, Crone EE, Schultz CB (2003) Landscape restoration: moving from generalities to methodologies. BioScience 53(5):491–502

    Article  Google Scholar 

  • Hughes FMR (1997) Floodplain biogeomorphology. Prog Phys Geogr 21(4):501–529

    Article  Google Scholar 

  • Hughes FMR, Adams WM, Muller E et al (2001) The importance of different scale processes for the restoration of floodplain woodlands. Regul Rivers Res Manag 17:325–345

    Article  Google Scholar 

  • Hughes FMR, Colston A, Mountford JO (2005) Restoring riparian ecosystems: the challenge of accommodating variability and designing restoration trajectories. Ecol Soc 10(1):12

    Google Scholar 

  • Hupp CR, Pierce AR, Noe GB (2009) Floodplain geomorphic processes and environmental impacts of human alteration along coastal plain river. Wetlands 29(2):413–429

    Article  Google Scholar 

  • Jackson CR, Pringle CM (2010) Hydrologic connectivity in intensively developed landscapes. BioScience 60:37–46

    Article  Google Scholar 

  • Jackson RB, Jobbágy EG, Avissar R et al (2005) Trading water for carbon with biological carbon sequestration. Science 310:1944–1947

    Article  PubMed  CAS  Google Scholar 

  • Junk WJ, Bayley PB, Sparks RE (1989) The flood pulse concept in river-floodplain systems. In: Dodge DP (ed) Proceedings of the international large river symposium. Canadian Special Publications of Fisheries and Aquatic Sciences, Fisheries and Oceans Canada, Ottawa

    Google Scholar 

  • Kondolf GM, Boulton AJ, O’Daniel S et al (2006) Process-based ecological river restoration: visualizing three-dimensional connectivity and dynamic vectors to discover lost linkages. Ecol Soc 11(2):5

    Google Scholar 

  • Kuuluvainen T, Aapala K, Ahlroth P et al (2002) Principles of ecological restoration of boreal forested ecosystems: Finland as an example. Silva Fennica 36(1):409–422

    Google Scholar 

  • Lamb D, Erskine PD, Parrotta JA (2005) Restoration of degraded tropical forest landscapes. Science 310(5754):1628–1632

    Article  PubMed  CAS  Google Scholar 

  • Lambert CP, Walling DE (1987) Floodplain sedimentation: a preliminary investigation of contemporary deposition within the lower reaches of the River Culm, Devon, UK. Geogr Ann 69A(3–4):393–404

    Article  Google Scholar 

  • Lockaby BG (2009) Floodplain ecosystems of the Southeast: linkages between forests and people. Wetl 29(2):407–412

    Article  Google Scholar 

  • Lockaby BG, Murphy AL, Somers GL (1996) Hydroperiod influences on nutrient dynamics in decomposing litter of a floodplain forest. Soil Sci Soc Am J 60(4):1267–1272

    Article  CAS  Google Scholar 

  • Lockaby BG, Conner WH, Mitchell J (2008) Floodplains. In: Jørgensen SE, Faith BD (eds) Ecosystems. Vol 2 of Encyclopedia of ecology. Elsevier, Oxford

    Google Scholar 

  • Maginnis S, Jackson W (2008) Restoring forest landscapes. http://cmsdata.iucn.org/downloads/restoring_forest_landscapes.pdf. Accessed 13 July 2009

  • Megonigal JP, Conner WH, Kroeger S et al (1997) Aboveground production in southeastern floodplain forests: a test of the subsidy-stress hypothesis. Ecology 78(2):370–384

    Google Scholar 

  • Meitzen KM (2009) Lateral channel migration effects on riparian forest structure and composition, Congaree River, South Carolina, USA. Wetl 29(2):465–475

    Article  Google Scholar 

  • Mengistu T, Teketay D, Hulten H et al (2005) The role of enclosures in the recovery of woody vegetation in degraded dryland hillsides of central and northern Ethiopia. J Arid Environ 60:259–281

    Article  Google Scholar 

  • Mitsch W, Gosselink J (2007) Wetlands, 4th edn. Wiley, Hoboken

    Google Scholar 

  • Moon KH, Park DK (2004) The role and activities of NGOs of reforestation in the northeast Asian region. For Ecol Manag 201:75–81

    Article  Google Scholar 

  • Morozova GS (2005) A review of Holocene avulsions of the Tigris and Euphrates Rivers and possible effects on the evolution of civilizations in lower Mesopotamia. Geoarchaeology 20(4):401–423

    Article  Google Scholar 

  • Murray AB, Paola C (2003) Modelling the effect of vegetation on channel pattern in bedload rivers. Earth Surf Process Landf 28(2):131–143

    Article  Google Scholar 

  • Nagy RC, Lockaby BG, Helms B et al (2011) Water resources and land use and cover in a humid region: the southeastern United States. J Environ Qual 40:867–878

    Article  PubMed  CAS  Google Scholar 

  • Naiman RJ, Décamps H (1997) The ecology of interfaces: riparian zones. Annu Rev Ecol Syst 28:621–658

    Article  Google Scholar 

  • Naiman RJ, Décamps H, McClain ME (2005) Riparia: ecology, conservation, and management of streamside communities. Elsevier Academic Press, Burlington

    Google Scholar 

  • Nanson GC, Croke JC (1992) A genetic classification of floodplains. Geomorphology 4:459–486

    Article  Google Scholar 

  • Neckles HA, Neill C (1994) Hydrologic control of litter decomposition in seasonally flooded prairie marshes. Hydrobiology 286(3):155–165

    Article  CAS  Google Scholar 

  • Newson M (1994) Hydrology and the river environment. Oxford University Press Inc., New York

    Google Scholar 

  • Nilsson C, Svedmark M (2002) Basic principles and ecological consequences of changing water regimes: riparian plant communities. Environ Manag 30(4):468–480

    Article  Google Scholar 

  • Odum EP, Finn JT, Franz EH (1979) Perturbation theory and the subsidy-stress gradient. BioScience 29(6):349–352

    Article  Google Scholar 

  • Odum WE, Odum EP, Odum HT (1995) Nature’s pulsing paradigm. Estuaries 18(4):547–555

    Article  Google Scholar 

  • Olivera F, DeFee BB (2007) Urbanization and its effect on runoff in the Whiteoak Bayou watershed, Texas. J Am Water Resour Assoc 43:170–182

    Article  Google Scholar 

  • Paul MJ, Meyer JL (2001) Streams in the urban landscape. Annu Rev Ecol Syst 32:333–365

    Article  Google Scholar 

  • Pizarro R, Araya S, Jordán C et al (2006) The effects of changes in vegetative cover on river flows in the Purapel river basin of central Chile. J Hydrol 327:249–257

    Article  Google Scholar 

  • Poff NL, Allan JD, Bain MB et al (1997) The natural flow regime: a paradigm for river conservation and restoration. BioScience 47(11):769–784

    Article  Google Scholar 

  • Rayburg S, Thoms M, Lenon E (2006) Unraveling the physical template of a terminal flood-plain-wetland sediment storage system. Sediment dynamics and the hydromorphology of fluvial systems (Proceedings of a symposium held in Dundee, UK, July 2006). IAHS Publication 306

    Google Scholar 

  • Reid LM (1993) Research and cumulative watershed effects. General Technical Report PSW-GTR-141-WWW. Albany, CA. Pacific Southwest Research Station, U.S. Department of Agriculture Forest Service

    Google Scholar 

  • Richards K, Brasington J, Hughes F (2002) Geomorphic dynamics of floodplains: ecological implications and a potential modeling strategy. Freshw Biol 47:559–579

    Article  Google Scholar 

  • Richardson CJ, Pahl JW (2005) The Duke Forest stormwater improvement and wetlands restoration project: final report to the North Carolina Clean Water Management Trust Fund and the North Carolina Ecosystem Enhancement Program. http://www.nicholas.duke.edu/wetland/CWMTF05.pdf. Accessed 20 June 2009

  • Robinson M, Cognard-Plancq A-L, Cosandey C et al (2003) Studies of the impact of forests on peak flows and baseflows: a European perspective. For Ecol Manag 186:85–97

    Article  Google Scholar 

  • Rodrigues RR, Lima RAF, Gandolfi S et al (2009) On the restoration of high diversity forests: 30 years of experience in the Brazilian Atlantic Forest. Biol Conserv 142:1242–1251

    Article  Google Scholar 

  • Rood SB, Heinz-Milne S (1989) Abrupt downstream forest decline following river damming in southern Alberta. Can J Bot 67:1744–1749

    Article  Google Scholar 

  • Rose S, Peters NE (2001) Effects of urbanization on streamflow in the Atlanta area (Georgia, USA): a comparative approach. Hydrol Process 15:1441–1457

    Article  Google Scholar 

  • Salo J, Kalliola R, Häkkinen I et al (1986) River dynamics and the diversity of the Amazon lowland forest. Nature 322:254–258

    Article  Google Scholar 

  • Schlesinger WH (1991) Biogeochemistry: an analysis of global change. Academic Press Inc., San Diego

    Google Scholar 

  • Schneider RL, Sharitz RR (1988) Hydrochory and regeneration in a bald cypress-water tupelo swamp forest. Ecology 69(4):1055–1063

    Article  Google Scholar 

  • Schoonover JE, Lockaby BG, Helms B (2006) Impacts of land cover on stream hydrology in the west Georgia piedmont, USA. J Environ Qual 35:2123–2131

    Article  PubMed  CAS  Google Scholar 

  • Scott DF, Prinsloo FW (2008) Longer-term effects of pine and eucalypt plantations on streamflow. Water Resour Res 44:W00A08. doi:10.1029/2007WR006781

    Article  Google Scholar 

  • Sharif M, Balbach H (2008) Water quality and sediment monitoring program at Ft. Benning, Ga. IPR Presentation to Natural Resources Branch, USCOE. Ft. Benning, GA

    Google Scholar 

  • Sheil D, Murdiyarso D (2009) How forests attract rain: an examination of a new hypothesis. BioScience 59(4):341–347

    Article  Google Scholar 

  • Stanturf JA, Gardiner E, Warren M (2003) Restoring forested wetland ecosystems. In: Holland M, Blood E (eds) Achieving sustainable freshwater systems. Island Press, Washington, DC

    Google Scholar 

  • Steiger J, Tabacchi E, Dufour S et al (2005) Hydrogeomorphic processes affecting riparian habitat within alluvial channel-floodplain river systems: a review for the temperate zone. River Res Appl 21:719–737

    Article  Google Scholar 

  • Stromberg JC (2001) Restoration of riparian vegetation in the south-western United States: importance of flow regimes and fluvial dynamism. J Arid Environ 49:17–34

    Article  Google Scholar 

  • Stromberg JC, Patten DT (1990) Riparian vegetation instream flow requirements: a case study from a diverted stream in the eastern Sierra Nevada, California, USA. Environ Manag 14(2):185–194

    Article  Google Scholar 

  • Sun G, Zhou G, Zhang Z et al (2006) Potential water yield reduction due to forestation across China. J Hydrol 328:548–558

    Article  Google Scholar 

  • Thoms MC (2003) Floodplain-river ecosystems: lateral connections and the implications of human interference. Geomorphology 56:335–349

    Article  Google Scholar 

  • Tockner K, Pennetzdorfer D, Reiner N et al (1999) Hydrological connectivity and the exchange of organic matter and nutrients in a dynamic river-floodplain system (Danube, Austria). Freshw Biol 41:521–535

    Article  Google Scholar 

  • Toda Y, Ikeda S, Kumagai K et al (2005) Effects of flood flow on flood plain soil and riparian vegetation in a gravel river. J Hydraulic Eng 131(11):950–960

    Article  Google Scholar 

  • Trabucco A, Zomer RJ, Bossio DA et al (2008) Climate change mitigation through afforestation/reforestation: a global analysis of hydrologic impacts with four case studies. Agric Ecosyst Environ 126:81–97

    Article  Google Scholar 

  • Trimble SW (2008) Man-induced soil erosion on the southern Piedmont, 2nd edn. Soil and Water Conservation Society, Ankeny

    Google Scholar 

  • UNEP (2009) Global partnership on forest landscape restoration. http://www.unep-wcmc.org/forest/restoration/globalpartnership/. Accessed 30 June 2009

  • USDA Natural Resources Conservation Service (NRCS), Rhode Island (2011) American recovery and reinvestment act (ARRA) emergency watershed protection program- floodplain easements. http://www.ri.nrcs.usda.gov/news/successstories/ARRA_EWP_Floodplain_Easements.html. Accessed 30 Mar 2012

  • Walling DE, He Q (1998) The spatial variability of overbank sedimentation on river floodplains. Geomorphology 24:209–223

    Article  Google Scholar 

  • Weston NB, Hollibaugh JT, Joye SB (2009) Population growth away from the coastal zone: thirty years of land use change and nutrient export in the Altamaha River, GA. Sci Total Environ 407(10):3347–3356

    Article  PubMed  CAS  Google Scholar 

  • Wolman MG, Leopold LB (1957) River flood plains: some observations on their formation. Physiographic and hydraulic studies of rivers. Geological Survey Professional Paper 282-C, US Geological Survey, Reston, VA

    Google Scholar 

  • Zhang L, Dawes WR, Walker GR (1999) Predicting the effect of vegetation changes on catchment average water balance. Technical Report 99/12, Cooperative Research Center for Catchment Hydrology, CSIRO Land and Water, Canberra

    Google Scholar 

  • Zheng H, Ouyang Z, Xu W et al (2008) Variation of carbon storage by different reforestation types in the hilly red soil region of southern China. For Ecol Manag 255:1113–1121

    Article  Google Scholar 

Download references

Acknowledgments

Funding for this research was provided by Auburn University’s Center for Forest Sustainability.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Chelsea Nagy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Nagy, R.C., Lockaby, B.G. (2012). Hydrologic Connectivity of Landscapes and Implications for Forest Restoration. In: Stanturf, J., Lamb, D., Madsen, P. (eds) Forest Landscape Restoration. World Forests, vol 15. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5326-6_4

Download citation

Publish with us

Policies and ethics