Possibilities of Targeted Therapies for Brain Metastasis

Chapter
Part of the Cancer Metastasis - Biology and Treatment book series (CMBT, volume 18)

Abstract

In the era of therapies successfully targeting distinct molecular pathways in cancer, the incidence and relevance of brain metastases are rising. Generally, the old therapeutic nihilism with respect to brain metastasis has given way to a more pragmatic approach, aiming to optimally combine (radio)surgery, whole brain radiotherapy, and sometimes systemic chemotherapy. However, local approaches inevitably fail to address the multifocal nature of the disease, whole brain radiotherapy shows relevant neurotoxicity, and systemic chemotherapy faces the obstacle of the blood-brain/tumor-barrier. Therefore, judicious addition of targeted agents to the therapeutic armamentarium for brain metastases holds the promise to make a real difference for patients suffering from this devastating disease. Unfortunately, because of their unfavorable prognosis, patients with brain metastases have traditionally been excluded from studies with targeted therapies. This is changing now for several reasons, making it likely that we will obtain relevant clinical data in the next few years. The following chapter gives an overview of new therapies targeting molecular pathways both in the tumor stroma and in cancer cells, covering its theoretical and reported activity against brain metastases. A special emphasis will be placed on prophylaxis, i.e. prevention of macrometastasis formation.

Keywords

Brain Metastasis Antiangiogenic Therapy Antiangiogenic Agent EGFR Mutation Breast Cancer Brain Metastasis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Preusser M, Capper D, Ilhan-Mutlu A, Berghoff AS, Birner P, Bartsch R, Marosi C, Zielinski C, Mehta MP, Winkler F, Wick W, von Deimling A (2012) Brain metastases: pathobiology and emerging targeted therapies. Acta Neuropathol 123:205–222PubMedCrossRefGoogle Scholar
  2. 2.
    Winkler F, Kozin SV, Tong RT, Chae SS, Booth MF, Garkavtsev I, Xu L, Hicklin DJ, Fukumura D, di Tomaso E, Munn LL, Jain RK (2004) Kinetics of vascular normalization by VEGFR2 blockade governs brain tumor response to radiation: role of oxygenation, angiopoietin-1, and matrix metalloproteinases. Cancer Cell 6:553–563PubMedGoogle Scholar
  3. 3.
    Plate KH, Mennel HD (1995) Vascular morphology and angiogenesis in glial tumors. Exp Toxicol Pathol 47:89–94PubMedCrossRefGoogle Scholar
  4. 4.
    Fidler IJ, Yano S, Zhang RD, Fujimaki T, Bucana CD (2002) The seed and soil hypothesis: vascularisation and brain metastases. Lancet Oncol 3:53–57PubMedCrossRefGoogle Scholar
  5. 5.
    Jain RK, di Tomaso E, Duda DG, Loeffler JS, Sorensen AG, Batchelor TT (2007) Angiogenesis in brain tumours. Nat Rev Neurosci 8:610–622PubMedCrossRefGoogle Scholar
  6. 6.
    Pardridge WM (2002) Drug and gene targeting to the brain with molecular Trojan horses. Nat Rev Drug Discov 1:131–139PubMedCrossRefGoogle Scholar
  7. 7.
    Slotman B, Faivre-Finn C, Kramer G, Rankin E, Snee M, Hatton M, Postmus P, Collette L, Musat E, Senan S (2007) Prophylactic cranial irradiation in extensive small-cell lung cancer. N Engl J Med 357:664–672PubMedCrossRefGoogle Scholar
  8. 8.
    Sawyers C (2004) Targeted cancer therapy. Nature 432:294–297PubMedCrossRefGoogle Scholar
  9. 9.
    Sethi N, Kang Y (2011) Unravelling the complexity of metastasis – molecular understanding and targeted therapies. Nat Rev Cancer 11:735–748PubMedCrossRefGoogle Scholar
  10. 10.
    Steeg PS, Camphausen KA, Smith QR (2011) Brain metastases as preventive and therapeutic targets. Nat Rev Cancer 11:352–363PubMedCrossRefGoogle Scholar
  11. 11.
    Fabian MA, Biggs WH 3rd, Treiber DK, Atteridge CE, Azimioara MD, Benedetti MG, Carter TA, Ciceri P, Edeen PT, Floyd M, Ford JM, Galvin M, Gerlach JL, Grotzfeld RM, Herrgard S, Insko DE, Insko MA, Lai AG, Lelias JM, Mehta SA, Milanov ZV, Velasco AM, Wodicka LM, Patel HK, Zarrinkar PP, Lockhart DJ (2005) A small molecule-kinase interaction map for clinical kinase inhibitors. Nat Biotechnol 23:329–336PubMedCrossRefGoogle Scholar
  12. 12.
    Bergers G, Song S, Meyer-Morse N, Bergsland E, Hanahan D (2003) Benefits of targeting both pericytes and endothelial cells in the tumor vasculature with kinase inhibitors. J Clin Invest 111:1287–1295PubMedGoogle Scholar
  13. 13.
    Ebos JM, Lee CR, Cruz-Munoz W, Bjarnason GA, Christensen JG, Kerbel RS (2009) Accelerated metastasis after short-term treatment with a potent inhibitor of tumor angiogenesis. Cancer Cell 15:232–239PubMedCrossRefGoogle Scholar
  14. 14.
    Vredenburgh JJ, Desjardins A, Herndon JE 2nd, Marcello J, Reardon DA, Quinn JA, Rich JN, Sathornsumetee S, Gururangan S, Sampson J, Wagner M, Bailey L, Bigner DD, Friedman AH, Friedman HS (2007) Bevacizumab plus irinotecan in recurrent glioblastoma multiforme. J Clin Oncol 25:4722–4729PubMedCrossRefGoogle Scholar
  15. 15.
    Yano S, Shinohara H, Herbst RS, Kuniyasu H, Bucana CD, Ellis LM, Davis DW, McConkey DJ, Fidler IJ (2000) Expression of vascular endothelial growth factor is necessary but not sufficient for production and growth of brain metastasis. Cancer Res 60:4959–4967PubMedGoogle Scholar
  16. 16.
    Kim LS, Huang S, Lu W, Lev DC, Price JE (2004) Vascular endothelial growth factor expression promotes the growth of breast cancer brain metastases in nude mice. Clin Exp Metastasis 21:107–118PubMedCrossRefGoogle Scholar
  17. 17.
    Kienast Y, von Baumgarten L, Fuhrmann M, Klinkert WE, Goldbrunner R, Herms J, Winkler F (2010) Real-time imaging reveals the single steps of brain metastasis formation. Nat Med 16:116–122PubMedCrossRefGoogle Scholar
  18. 18.
    von Baumgarten L, Brucker D, Tirniceru A, Kienast Y, Grau S, Burgold S, Herms J, Winkler F (2011) Bevacizumab has differential and dose-dependent effects on glioma blood vessels and tumor cells. Clin Cancer Res 17:6192–6205CrossRefGoogle Scholar
  19. 19.
    Murakami K, Nawano S, Moriyama N, Sekiguchi R, Satake M, Fujimoto H, Ichikawa T (1996) Intracranial metastases of hepatocellular carcinoma: CT and MRI. Neuroradiology 38(Suppl 1):S31–S35PubMedCrossRefGoogle Scholar
  20. 20.
    Gordon MS, Margolin K, Talpaz M, Sledge GW Jr, Holmgren E, Benjamin R, Stalter S, Shak S, Adelman D (2001) Phase I safety and pharmacokinetic study of recombinant human anti-vascular endothelial growth factor in patients with advanced cancer. J Clin Oncol 19:843–850PubMedGoogle Scholar
  21. 21.
    Besse B, Lasserre SF, Compton P, Huang J, Augustus S, Rohr UP (2010) Bevacizumab safety in patients with central nervous system metastases. Clin Cancer Res 16:269–278PubMedCrossRefGoogle Scholar
  22. 22.
    De Braganca KC, Janjigian YY, Azzoli CG, Kris MG, Pietanza MC, Nolan CP, Omuro AM, Holodny AI, Lassman AB (2010) Efficacy and safety of bevacizumab in active brain metastases from non-small cell lung cancer. J Neurooncol 100:443–447PubMedCrossRefGoogle Scholar
  23. 23.
    Socinski MA, Langer CJ, Huang JE, Kolb MM, Compton P, Wang L, Akerley W (2009) Safety of bevacizumab in patients with non-small-cell lung cancer and brain metastases. J Clin Oncol 27:5255–5261PubMedCrossRefGoogle Scholar
  24. 24.
    Staehler M, Haseke N, Nuhn P, Tullmann C, Karl A, Siebels M, Stief CG, Wowra B, Muacevic A (2011) Simultaneous anti-angiogenic therapy and single-fraction radiosurgery in clinically relevant metastases from renal cell carcinoma. BJU Int 108:673–678PubMedGoogle Scholar
  25. 25.
    Knisely JP, Berkey B, Chakravarti A, Yung AW, Curran WJ Jr, Robins HI, Movsas B, Brachman DG, Henderson RH, Mehta MP (2008) A phase III study of conventional radiation therapy plus thalidomide versus conventional radiation therapy for multiple brain metastases (RTOG 0118). Int J Radiat Oncol Biol Phys 71:79–86PubMedCrossRefGoogle Scholar
  26. 26.
    Preusser M, de Ribaupierre S, Wohrer A, Erridge SC, Hegi M, Weller M, Stupp R (2011) Current concepts and management of glioblastoma. Ann Neurol 70:9–21PubMedCrossRefGoogle Scholar
  27. 27.
    Mathews MS, Linskey ME, Hasso AN, Fruehauf JP (2008) The effect of bevacizumab (Avastin) on neuroimaging of brain metastases. Surg Neurol 70:649–652, discussion 653PubMedCrossRefGoogle Scholar
  28. 28.
    Quant EC, Wen PY (2011) Response assessment in neuro-oncology. Curr Oncol Rep 13:50–56PubMedCrossRefGoogle Scholar
  29. 29.
    Kamoun WS, Ley CD, Farrar CT, Duyverman AM, Lahdenranta J, Lacorre DA, Batchelor TT, di Tomaso E, Duda DG, Munn LL, Fukumura D, Sorensen AG, Jain RK (2009) Edema control by cediranib, a vascular endothelial growth factor receptor-targeted kinase inhibitor, prolongs survival despite persistent brain tumor growth in mice. J Clin Oncol 27:2542–2552PubMedCrossRefGoogle Scholar
  30. 30.
    Kienast Y, Winkler F (2010) Therapy and prophylaxis of brain metastases. Expert Rev Anticancer Ther 10:1763–1777PubMedCrossRefGoogle Scholar
  31. 31.
    Massard C, Zonierek J, Gross-Goupil M, Fizazi K, Szczylik C, Escudier B (2010) Incidence of brain metastases in renal cell carcinoma treated with sorafenib. Ann Oncol 21:1027–1031PubMedCrossRefGoogle Scholar
  32. 32.
    Paez-Ribes M, Allen E, Hudock J, Takeda T, Okuyama H, Vinals F, Inoue M, Bergers G, Hanahan D, Casanovas O (2009) Antiangiogenic therapy elicits malignant progression of tumors to increased local invasion and distant metastasis. Cancer Cell 15:220–231PubMedCrossRefGoogle Scholar
  33. 33.
    Zuniga RM, Torcuator R, Jain R, Anderson J, Doyle T, Ellika S, Schultz L, Mikkelsen T (2009) Efficacy, safety and patterns of response and recurrence in patients with recurrent high-grade gliomas treated with bevacizumab plus irinotecan. J Neurooncol 91:329–336PubMedCrossRefGoogle Scholar
  34. 34.
    Narayana A, Kunnakkat SD, Medabalmi P, Golfinos J, Parker E, Knopp E, Zagzag D, Eagan P, Gruber D, Gruber ML (2010) Change in pattern of relapse after antiangiogenic therapy in high-grade glioma. Int J Radiat Oncol Biol Phys 82(1):77–82PubMedCrossRefGoogle Scholar
  35. 35.
    Wick A, Dorner N, Schafer N, Hofer S, Heiland S, Schemmer D, Platten M, Weller M, Bendszus M, Wick W (2011) Bevacizumab does not increase the risk of remote relapse in malignant glioma. Ann Neurol 69:586–592PubMedCrossRefGoogle Scholar
  36. 36.
    Leenders WP, Kusters B, Verrijp K, Maass C, Wesseling P, Heerschap A, Ruiter D, Ryan A, de Waal R (2004) Antiangiogenic therapy of cerebral melanoma metastases results in sustained tumor progression via vessel co-option. Clin Cancer Res 10:6222–6230PubMedCrossRefGoogle Scholar
  37. 37.
    Jubb AM, Cesario A, Ferguson M, Congedo MT, Gatter KC, Lococo F, Mule A, Pezzella F (2011) Vascular phenotypes in primary non-small cell lung carcinomas and matched brain metastases. Br J Cancer 104:1877–1881PubMedCrossRefGoogle Scholar
  38. 38.
    Lin NU, Winer EP (2007) Brain metastases: the HER2 paradigm. Clin Cancer Res 13:1648–1655PubMedCrossRefGoogle Scholar
  39. 39.
    Miller KD, Weathers T, Haney LG, Timmerman R, Dickler M, Shen J, Sledge GW Jr (2003) Occult central nervous system involvement in patients with metastatic breast cancer: prevalence, predictive factors and impact on overall survival. Ann Oncol 14:1072–1077PubMedCrossRefGoogle Scholar
  40. 40.
    Weil RJ, Palmieri DC, Bronder JL, Stark AM, Steeg PS (2005) Breast cancer metastasis to the central nervous system. Am J Pathol 167:913–920PubMedCrossRefGoogle Scholar
  41. 41.
    Heitz F, Harter P, Lueck HJ, Fissler-Eckhoff A, Lorenz-Salehi F, Scheil-Bertram S, Traut A, du Bois A (2009) Triple-negative and HER2-overexpressing breast cancers exhibit an elevated risk and an earlier occurrence of cerebral metastases. Eur J Cancer 45:2792–2798PubMedCrossRefGoogle Scholar
  42. 42.
    Pestalozzi BC, Zahrieh D, Price KN, Holmberg SB, Lindtner J, Collins J, Crivellari D, Fey MF, Murray E, Pagani O, Simoncini E, Castiglione-Gertsch M, Gelber RD, Coates AS, Goldhirsch A (2006) Identifying breast cancer patients at risk for Central Nervous System (CNS) metastases in trials of the International Breast Cancer Study Group (IBCSG). Ann Oncol 17:935–944PubMedCrossRefGoogle Scholar
  43. 43.
    Palmieri D, Bronder JL, Herring JM, Yoneda T, Weil RJ, Stark AM, Kurek R, Vega-Valle E, Feigenbaum L, Halverson D, Vortmeyer AO, Steinberg SM, Aldape K, Steeg PS (2007) Her-2 overexpression increases the metastatic outgrowth of breast cancer cells in the brain. Cancer Res 67:4190–4198PubMedCrossRefGoogle Scholar
  44. 44.
    Gaedcke J, Traub F, Milde S, Wilkens L, Stan A, Ostertag H, Christgen M, von Wasielewski R, Kreipe HH (2007) Predominance of the basal type and HER-2/neu type in brain metastasis from breast cancer. Mod Pathol 20:864–870PubMedCrossRefGoogle Scholar
  45. 45.
    Konecny GE, Meng YG, Untch M, Wang HJ, Bauerfeind I, Epstein M, Stieber P, Vernes JM, Gutierrez J, Hong K, Beryt M, Hepp H, Slamon DJ, Pegram MD (2004) Association between HER-2/neu and vascular endothelial growth factor expression predicts clinical outcome in primary breast cancer patients. Clin Cancer Res 10:1706–1716PubMedCrossRefGoogle Scholar
  46. 46.
    Laughner E, Taghavi P, Chiles K, Mahon PC, Semenza GL (2001) HER2 (neu) signaling increases the rate of hypoxia-inducible factor 1alpha (HIF-1alpha) synthesis: novel mechanism for HIF-1-mediated vascular endothelial growth factor expression. Mol Cell Biol 21:3995–4004PubMedCrossRefGoogle Scholar
  47. 47.
    Izumi Y, Xu L, di Tomaso E, Fukumura D, Jain RK (2002) Tumour biology: herceptin acts as an anti-angiogenic cocktail. Nature 416:279–280PubMedCrossRefGoogle Scholar
  48. 48.
    Souglakos J, Vamvakas L, Apostolaki S, Perraki M, Saridaki Z, Kazakou I, Pallis A, Kouroussis C, Androulakis N, Kalbakis K, Millaki G, Mavroudis D, Georgoulias V (2006) Central nervous system relapse in patients with breast cancer is associated with advanced stages, with the presence of circulating occult tumor cells and with the HER2/neu status. Breast Cancer Res 8:R36PubMedCrossRefGoogle Scholar
  49. 49.
    Stemmler HJ, Schmitt M, Willems A, Bernhard H, Harbeck N, Heinemann V (2007) Ratio of trastuzumab levels in serum and cerebrospinal fluid is altered in HER2-positive breast cancer patients with brain metastases and impairment of blood-brain barrier. Anticancer Drugs 18:23–28PubMedCrossRefGoogle Scholar
  50. 50.
    Burstein HJ, Lieberman G, Slamon DJ, Winer EP, Klein P (2005) Isolated central nervous system metastases in patients with HER2-overexpressing advanced breast cancer treated with first-line trastuzumab-based therapy. Ann Oncol 16:1772–1777PubMedCrossRefGoogle Scholar
  51. 51.
    Le Scodan R, Jouanneau L, Massard C, Gutierrez M, Kirova Y, Cherel P, Gachet J, Labib A, Mouret-Fourme E (2011) Brain metastases from breast cancer: prognostic significance of HER-2 overexpression, effect of trastuzumab and cause of death. BMC Cancer 11:395PubMedCrossRefGoogle Scholar
  52. 52.
    Stemmler HJ, Schmitt M, Harbeck N, Willems A, Bernhard H, Lassig D, Schoenberg S, Heinemann V (2006) Application of intrathecal trastuzumab (Herceptintrade mark) for treatment of meningeal carcinomatosis in HER2-overexpressing metastatic breast cancer. Oncol Rep 15:1373–1377PubMedGoogle Scholar
  53. 53.
    Oliveira M, Braga S, Passos-Coelho JL, Fonseca R, Oliveira J (2011) Complete response in HER2+ leptomeningeal carcinomatosis from breast cancer with intrathecal trastuzumab. Breast Cancer Res Treat 127:841–844PubMedCrossRefGoogle Scholar
  54. 54.
    Polli JW, Olson KL, Chism JP, John-Williams LS, Yeager RL, Woodard SM, Otto V, Castellino S, Demby VE (2009) An unexpected synergist role of P-glycoprotein and breast cancer resistance protein on the central nervous system penetration of the tyrosine kinase inhibitor lapatinib (N-{3-chloro-4-[(3-fluorobenzyl)oxy]phenyl}-6-[5-({[2-(methylsulfonyl)ethyl]amino }methyl)-2-furyl]-4-quinazolinamine; GW572016). Drug Metab Dispos: The Biol Fate Chem 37:439–442CrossRefGoogle Scholar
  55. 55.
    Taskar KS, Rudraraju V, Mittapalli RK, Samala R, Thorsheim HR, Lockman J, Gril B, Hua E, Palmieri D, Polli JW, Castellino S, Rubin SD, Lockman PR, Steeg PS, Smith QR (2011) Lapatinib distribution in HER2 overexpressing experimental brain metastases of breast cancer. Pharm Res 29(3):770–781PubMedCrossRefGoogle Scholar
  56. 56.
    Lin NU, Carey LA, Liu MC, Younger J, Come SE, Ewend M, Harris GJ, Bullitt E, Van den Abbeele AD, Henson JW, Li X, Gelman R, Burstein HJ, Kasparian E, Kirsch DG, Crawford A, Hochberg F, Winer EP (2008) Phase II trial of lapatinib for brain metastases in patients with human epidermal growth factor receptor 2-positive breast cancer. J Clin Oncol 26:1993–1999PubMedCrossRefGoogle Scholar
  57. 57.
    Lin NU, Dieras V, Paul D, Lossignol D, Christodoulou C, Stemmler HJ, Roche H, Liu MC, Greil R, Ciruelos E, Loibl S, Gori S, Wardley A, Yardley D, Brufsky A, Blum JL, Rubin SD, Dharan B, Steplewski K, Zembryki D, Oliva C, Roychowdhury D, Paoletti P, Winer EP (2009) Multicenter phase II study of lapatinib in patients with brain metastases from HER2-positive breast cancer. Clin Cancer Res 15:1452–1459PubMedCrossRefGoogle Scholar
  58. 58.
    Lin NU, Eierman W, Greil R, Campone M, Kaufman B, Steplewski K, Lane SR, Zembryki D, Rubin SD, Winer EP (2011) Randomized phase II study of lapatinib plus capecitabine or lapatinib plus topotecan for patients with HER2-positive breast cancer brain metastases. J Neurooncol 105:613–620PubMedCrossRefGoogle Scholar
  59. 59.
    Cameron D, Casey M, Press M, Lindquist D, Pienkowski T, Romieu CG, Chan S, Jagiello-Gruszfeld A, Kaufman B, Crown J, Chan A, Campone M, Viens P, Davidson N, Gorbounova V, Raats JI, Skarlos D, Newstat B, Roychowdhury D, Paoletti P, Oliva C, Rubin S, Stein S, Geyer CE (2008) A phase III randomized comparison of lapatinib plus capecitabine versus capecitabine alone in women with advanced breast cancer that has progressed on trastuzumab: updated efficacy and biomarker analyses. Breast Cancer Res Treat 112:533–543PubMedCrossRefGoogle Scholar
  60. 60.
    Geyer CE, Forster J, Lindquist D, Chan S, Romieu CG, Pienkowski T, Jagiello-Gruszfeld A, Crown J, Chan A, Kaufman B, Skarlos D, Campone M, Davidson N, Berger M, Oliva C, Rubin SD, Stein S, Cameron D (2006) Lapatinib plus capecitabine for HER2-positive advanced breast cancer. N Engl J Med 355:2733–2743PubMedCrossRefGoogle Scholar
  61. 61.
    Gril B, Palmieri D, Bronder JL, Herring JM, Vega-Valle E, Feigenbaum L, Liewehr DJ, Steinberg SM, Merino MJ, Rubin SD, Steeg PS (2008) Effect of lapatinib on the outgrowth of metastatic breast cancer cells to the brain. J Natl Cancer Inst 100:1092–1103PubMedCrossRefGoogle Scholar
  62. 62.
    Yap TA, Vidal L, Adam J, Stephens P, Spicer J, Shaw H, Ang J, Temple G, Bell S, Shahidi M, Uttenreuther-Fischer M, Stopfer P, Futreal A, Calvert H, de Bono JS, Plummer R (2010) Phase I trial of the irreversible EGFR and HER2 kinase inhibitor BIBW 2992 in patients with advanced solid tumors. J Clin Oncol 28:3965–3972PubMedCrossRefGoogle Scholar
  63. 63.
    Eichler AF, Kahle KT, Wang DL, Joshi VA, Willers H, Engelman JA, Lynch TJ, Sequist LV (2010) EGFR mutation status and survival after diagnosis of brain metastasis in nonsmall cell lung cancer. Neuro Oncol 12:1193–1199PubMedCrossRefGoogle Scholar
  64. 64.
    Jamal-Hanjani M, Spicer J (2011) EGFR tyrosine kinase inhibitors in the treatment of EGFR mutant NSCLC metastatic to the brain. Clin Cancer Res 18(4):1–7Google Scholar
  65. 65.
    Porta R, Sanchez-Torres JM, Paz-Ares L, Massuti B, Reguart N, Mayo C, Lianes P, Queralt C, Guillem V, Salinas P, Catot S, Isla D, Pradas A, Gurpide A, de Castro J, Polo E, Puig T, Taron M, Colomer R, Rosell R (2011) Brain metastases from lung cancer responding to erlotinib: the importance of EGFR mutation. Eur Respir J 37:624–631PubMedCrossRefGoogle Scholar
  66. 66.
    Hotta K, Kiura K, Ueoka H, Tabata M, Fujiwara K, Kozuki T, Okada T, Hisamoto A, Tanimoto M (2004) Effect of gefitinib (‘Iressa’, ZD1839) on brain metastases in patients with advanced non-small-cell lung cancer. Lung Cancer 46:255–261PubMedCrossRefGoogle Scholar
  67. 67.
    Namba Y, Kijima T, Yokota S, Niinaka M, Kawamura S, Iwasaki T, Takeda Y, Kimura H, Okada T, Yamaguchi T, Nakagawa M, Okumura Y, Maeda H, Ito M (2004) Gefitinib in patients with brain metastases from non-small-cell lung cancer: review of 15 clinical cases. Clin Lung Cancer 6:123–128PubMedCrossRefGoogle Scholar
  68. 68.
    Kim JE, Lee DH, Choi Y, Yoon DH, Kim SW, Suh C, Lee JS (2009) Epidermal growth factor receptor tyrosine kinase inhibitors as a first-line therapy for never-smokers with adenocarcinoma of the lung having asymptomatic synchronous brain metastasis. Lung Cancer 65:351–354PubMedCrossRefGoogle Scholar
  69. 69.
    Wu C, Li YL, Wang ZM, Li Z, Zhang TX, Wei Z (2007) Gefitinib as palliative therapy for lung adenocarcinoma metastatic to the brain. Lung Cancer 57:359–364PubMedCrossRefGoogle Scholar
  70. 70.
    Ma S, Xu Y, Deng Q, Yu X (2009) Treatment of brain metastasis from non-small cell lung cancer with whole brain radiotherapy and Gefitinib in a Chinese population. Lung Cancer 65:198–203PubMedCrossRefGoogle Scholar
  71. 71.
    Ceresoli GL, Cappuzzo F, Gregorc V, Bartolini S, Crino L, Villa E (2004) Gefitinib in patients with brain metastases from non-small-cell lung cancer: a prospective trial. Ann Oncol 15:1042–1047PubMedCrossRefGoogle Scholar
  72. 72.
    Chiu CH, Tsai CM, Chen YM, Chiang SC, Liou JL, Perng RP (2005) Gefitinib is active in patients with brain metastases from non-small cell lung cancer and response is related to skin toxicity. Lung Cancer 47:129–138PubMedCrossRefGoogle Scholar
  73. 73.
    Fekrazad MH, Ravindranathan M, Jones DV Jr (2007) Response of intracranial metastases to erlotinib therapy. J Clin Oncol 25:5024–5026PubMedCrossRefGoogle Scholar
  74. 74.
    Lai CS, Boshoff C, Falzon M, Lee SM (2006) Complete response to erlotinib treatment in brain metastases from recurrent NSCLC. Thorax 61:91PubMedCrossRefGoogle Scholar
  75. 75.
    Lind JS, Lagerwaard FJ, Smit EF, Senan S (2009) Phase I study of concurrent whole brain radiotherapy and erlotinib for multiple brain metastases from non-small-cell lung cancer. Int J Radiat Oncol Biol Phys 74:1391–1396PubMedCrossRefGoogle Scholar
  76. 76.
    Altavilla G, Arrigo C, Santarpia MC, Galletti G, Picone G, Marabello G, Tomasello C, Pitini VV (2008) Erlotinib therapy in a patient with non-small-cell lung cancer and brain metastases. J Neurooncol 90:31–33PubMedCrossRefGoogle Scholar
  77. 77.
    Masuda T, Hattori N, Hamada A, Iwamoto H, Ohshimo S, Kanehara M, Ishikawa N, Fujitaka K, Haruta Y, Murai H, Kohno N (2011) Erlotinib efficacy and cerebrospinal fluid concentration in patients with lung adenocarcinoma developing leptomeningeal metastases during gefitinib therapy. Cancer Chemother Pharmacol 67:1465–1469PubMedCrossRefGoogle Scholar
  78. 78.
    Olson JJ, Paleologos NA, Gaspar LE, Robinson PD, Morris RE, Ammirati M, Andrews DW, Asher AL, Burri SH, Cobbs CS, Kondziolka D, Linskey ME, Loeffler JS, McDermott M, Mehta MP, Mikkelsen T, Patchell RA, Ryken TC, Kalkanis SN (2010) The role of emerging and investigational therapies for metastatic brain tumors: a systematic review and evidence-based clinical practice guideline of selected topics. J Neurooncol 96:115–142PubMedCrossRefGoogle Scholar
  79. 79.
    Jackman DM, Holmes AJ, Lindeman N, Wen PY, Kesari S, Borras AM, Bailey C, de Jong F, Janne PA, Johnson BE (2006) Response and resistance in a non-small-cell lung cancer patient with an epidermal growth factor receptor mutation and leptomeningeal metastases treated with high-dose gefitinib. J Clin Oncol 24:4517–4520PubMedCrossRefGoogle Scholar
  80. 80.
    Heon S, Yeap BY, Britt GJ, Costa DB, Rabin MS, Jackman DM, Johnson BE (2010) Development of central nervous system metastases in patients with advanced non-small cell lung cancer and somatic EGFR mutations treated with gefitinib or erlotinib. Clin Cancer Res 16:5873–5882PubMedCrossRefGoogle Scholar
  81. 81.
    El-Osta H, Falchook G, Tsimberidou A, Hong D, Naing A, Kim K, Wen S, Janku F, Kurzrock R (2011) BRAF mutations in advanced cancers: clinical characteristics and outcomes. PLoS One 6:e25806PubMedCrossRefGoogle Scholar
  82. 82.
    Chapman PB, Hauschild A, Robert C, Haanen JB, Ascierto P, Larkin J, Dummer R, Garbe C, Testori A, Maio M, Hogg D, Lorigan P, Lebbe C, Jouary T, Schadendorf D, Ribas A, O’Day SJ, Sosman JA, Kirkwood JM, Eggermont AM, Dreno B, Nolop K, Li J, Nelson B, Hou J, Lee RJ, Flaherty KT, McArthur GA (2011) Improved survival with vemurafenib in melanoma with BRAF V600E mutation. N Engl J Med 364:2507–2516PubMedCrossRefGoogle Scholar
  83. 83.
    Falchook GS, Long GV, Kurzrock R, Kim KB, Arkenau TH, Brown MP, Hamid O, Infante JR, Millward M, Pavlick AC, O’Day SJ, Blackman SC, Curtis CM, Lebowitz P, Ma B, Ouellet D, Kefford RF (2012) Dabrafenib in patients with melanoma, untreated brain metastases, and other solid tumours: a phase 1 dose-escalation trial. Lancet. 379(9829):1893–901Google Scholar
  84. 84.
    Capper D, Berghoff AS, Magerle M, Ilhan A, Wohrer A, Hackl M, Pichler J, Pusch S, Meyer J, Habel A, Petzelbauer P, Birner P, von Deimling A, Preusser M (2011) Immunohistochemical testing of BRAF V600E status in 1,120 tumor tissue samples of patients with brain metastases. Acta Neuropathol 123:223–233PubMedCrossRefGoogle Scholar
  85. 85.
    Nazarian R, Shi H, Wang Q, Kong X, Koya RC, Lee H, Chen Z, Lee MK, Attar N, Sazegar H, Chodon T, Nelson SF, McArthur G, Sosman JA, Ribas A, Lo RS (2010) Melanomas acquire resistance to B-RAF(V600E) inhibition by RTK or N-RAS upregulation. Nature 468:973–977PubMedCrossRefGoogle Scholar
  86. 86.
    Wagle N, Emery C, Berger MF, Davis MJ, Sawyer A, Pochanard P, Kehoe SM, Johannessen CM, Macconaill LE, Hahn WC, Meyerson M, Garraway LA (2011) Dissecting therapeutic resistance to RAF inhibition in melanoma by tumor genomic profiling. J Clin Oncol 29:3085–3096PubMedCrossRefGoogle Scholar
  87. 87.
    Hodi FS, O’Day SJ, McDermott DF, Weber RW, Sosman JA, Haanen JB, Gonzalez R, Robert C, Schadendorf D, Hassel JC, Akerley W, van den Eertwegh AJ, Lutzky J, Lorigan P, Vaubel JM, Linette GP, Hogg D, Ottensmeier CH, Lebbe C, Peschel C, Quirt I, Clark JI, Wolchok JD, Weber JS, Tian J, Yellin MJ, Nichol GM, Hoos A, Urba WJ (2010) Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med 363:711–723PubMedCrossRefGoogle Scholar
  88. 88.
    Robert C, Thomas L, Bondarenko I, O’Day S, Weber J, Garbe C, Lebbe C, Baurain JF, Testori A, Grob JJ, Davidson N, Richards J, Maio M, Hauschild A, Miller WH Jr, Gascon P, Lotem M, Harmankaya K, Ibrahim R, Francis S, Chen TT, Humphrey R, Hoos A, Wolchok JD (2011) Ipilimumab plus dacarbazine for previously untreated metastatic melanoma. N Engl J Med 364:2517–2526PubMedCrossRefGoogle Scholar
  89. 89.
    Schartz NE, Farges C, Madelaine I, Bruzzoni H, Calvo F, Hoos A, Lebbe C (2010) Complete regression of a previously untreated melanoma brain metastasis with ipilimumab. Melanoma Res 20:247–250PubMedGoogle Scholar
  90. 90.
    Weber JS, Amin A, Minor D, Siegel J, Berman D, O’Day SJ (2011) Safety and clinical activity of ipilimumab in melanoma patients with brain metastases: retrospective analysis of data from a phase 2 trial. Melanoma Res 21:530–534PubMedCrossRefGoogle Scholar
  91. 91.
    Schenk D (2002) Amyloid-beta immunotherapy for Alzheimer’s disease: the end of the beginning. Nat Rev Neurosci 3:824–828PubMedCrossRefGoogle Scholar
  92. 92.
    Takahashi-Yanaga F, Kahn M (2010) Targeting Wnt signaling: can we safely eradicate cancer stem cells? Clin Cancer Res 16:3153–3162PubMedCrossRefGoogle Scholar
  93. 93.
    Nguyen DX, Chiang AC, Zhang XH, Kim JY, Kris MG, Ladanyi M, Gerald WL, Massague J (2009) WNT/TCF signaling through LEF1 and HOXB9 mediates lung adenocarcinoma metastasis. Cell 138:51–62PubMedCrossRefGoogle Scholar
  94. 94.
    Smid M, Wang Y, Zhang Y, Sieuwerts AM, Yu J, Klijn JG, Foekens JA, Martens JW (2008) Subtypes of breast cancer show preferential site of relapse. Cancer Res 68:3108–3114PubMedCrossRefGoogle Scholar
  95. 95.
    Pukrop T, Dehghani F, Chuang HN, Lohaus R, Bayanga K, Heermann S, Regen T, Van Rossum D, Klemm F, Schulz M, Siam L, Hoffmann A, Trumper L, Stadelmann C, Bechmann I, Hanisch UK, Binder C (2010) Microglia promote colonization of brain tissue by breast cancer cells in a Wnt-dependent way. Glia 58:1477–1489PubMedGoogle Scholar
  96. 96.
    Garber K (2009) Drugging the Wnt pathway: problems and progress. J Natl Cancer Inst 101:548–550PubMedCrossRefGoogle Scholar
  97. 97.
    Capper D, Preusser M, Habel A, Sahm F, Ackermann U, Schindler G, Pusch S, Mechtersheimer G, Zentgraf H, von Deimling A (2011) Assessment of BRAF V600E mutation status by immunohistochemistry with a mutation-specific monoclonal antibody. Acta Neuropathol 122:11–19PubMedCrossRefGoogle Scholar
  98. 98.
    Duda DG, Ancukiewicz M, Jain RK (2010) Biomarkers of antiangiogenic therapy: how do we move from candidate biomarkers to valid biomarkers? J Clin Oncol 28:183–185PubMedCrossRefGoogle Scholar
  99. 99.
    Wen PY, Schiff D, Cloughesy TF, Reardon DA, Batchelor TT, Chabner BA, Flaherty K, de Groot JF, Gilbert MR, Galanis E, Chang SM, Schwartz GK, Peereboom D, Mehta MP, Yung WK, Grossman SA, Prados MD, Deangelis LM (2011) It is time to include patients with brain tumors in phase I trials in oncology. J Clin Oncol 29:3211–3213PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  1. 1.Abteilung Neuroonkologie, Neurologische Klinik und Nationales TumorzentrumUniversity of HeidelbergHeidelbergGermany

Personalised recommendations