Skip to main content

Erosional and Depositional Textures and Structures in Coastal Karst Landscapes

  • Chapter
  • First Online:
Coastal Karst Landforms

Part of the book series: Coastal Research Library ((COASTALRL,volume 5))

Abstract

Exposed surfaces of limestones on marine coastlines are characterized by a tremendous range of rock textures and structures. Many of them are features limited to coastal areas and are morphologically and genetically distinct from inland analogs. This distinction is due to idiosyncrasies of both coastal environments and coastal limestones. Processes operating in coastal settings are not limited to dissolution by fresh water and involve profound chemical and physical action of sea water and marine biota. In addition, these processes act upon rocks that are frequently younger and diagenetically less mature than inland limestones that have undergone deep burial and accompanying changes. The outcomes are distinct types of karren sculpturing, bioerosional markings, deposited and precipitated fabrics, bioconstructions, and compound structures that are unique to coastal karst. Many are limited to particular microenvironmental settings and certain elevations with respect to the sea level and can, therefore, be used as powerful paleoenvironmental and past sea level indicators.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbott AT, Pottratz SW (1969) Marine pothole erosion, Oahu, Hawaii. Pac Sci 23(3):276–290

    Google Scholar 

  • Abensperg-Traun M, Wheaton GA, Eliot IG (1990) Bioerosion, notch formation and micromorphology in intertidal and supratidal zones of calcareous sandstone stack. J R Soc West Aust 73:47–56

    Google Scholar 

  • Ahr WM, Stanton RJ Jr (1973) The sedimentologic and paleoecologic significance of Lithotrya, a rock-boring barnacle. J Sediment Petrol 43:20–23

    Google Scholar 

  • Allen JRL (1985) Principles of physical sedimentology. George Allen & Unwin, London

    Book  Google Scholar 

  • Andrews C, Williams RBG (2000) Limpet erosion of chalk shore platforms in southeast England. Earth Surf Proc Land 25:1371–1382

    Article  Google Scholar 

  • Ansell AD, Nair NB (1969) A comparative study of bivalves which bore mainly by mechanical means. Am Zool 9:857–868

    Google Scholar 

  • Antonioli F, Carulli GB, Furlani S, Auriemma R, Marocco R (2004) The enigma of submerged marine notches in northern Adriatic Sea. Quaternaria Nova 8:263–275

    Google Scholar 

  • Asgaard U, Bromley RG (2008) Echinometrid sea urchins, their trophic styles and corresponding bioerosion. In: Wisshak M, Tapanila L (eds) Current developments in bioerosion. Springer, Berlin, pp 279–303

    Chapter  Google Scholar 

  • Azzopardi L, Schembri PJ (1997) Vermetid crusts from the Maltese Islands (Central Mediterranean). Mar Life 7(1–2):7–16

    Google Scholar 

  • Baceta JI, Wright VP, Pujalte V (2001) Palaeo-mixing zone karst features from Palaeocene carbonates of north Spain: criteria for recognizing a potentially widespread but rarely documented diagenetic system. Sediment Geol 139(3–4):205–216

    Article  Google Scholar 

  • Back W, Hanshaw BB, Herman JS, Van Driel JN (1986) Differential dissolution of a Pleistocene reef in the ground-water mixing zone of coastal Yucatán, Mexico. Geology 14(2):137–140

    Article  Google Scholar 

  • Basso D, Tomaselli V (1994) Palaeoecological potentiality of rhodoliths: a Mediterranean case history. Bollettino della Societa Paleontologica Italiana Special volume 2:17–27

    Google Scholar 

  • Battistini R, Guilcher A (1982) Les plates-formes littorales à vasques en roches calcaires: repartition dans le monde, mer Méditerranée non comprise. Karst Littoraux, Comite National Français de Géographie, Actes du Colloquium de Perpignan 1:1–11

    Google Scholar 

  • Benac Č, Juračić M, Bakran-Petricioli T (2004) Submerged tidal notches in the Rijeka Bay NE Adriatic Sea: indicators of relative sea-level change and of recent tectonic movements. Mar Geol 212(1–4):21–33

    Article  Google Scholar 

  • Bögli A (1951) Probleme der Karrenbildung. Geogr Helv 3:191–204

    Article  Google Scholar 

  • Bögli A (1960) Kalklösung und Karrenbildung. Zeitschrift für Geomorphologie Supplementband 2:4–21

    Google Scholar 

  • Bögli A (1964) Mischungkorrosion – ein Beitrag zum Verstärkungsproblem. Erdkunde 18:83–92

    Article  Google Scholar 

  • Bosence DWJ (1973) Recent serpulid reefs, Connemara, Eire. Nature 242:40–41

    Article  Google Scholar 

  • Bourke MC, Viles H (1997) A photographic atlas of rock breakdown features in geomorphic environments. Planetary Science Institute, Tucson/Arizona, 88 p

    Google Scholar 

  • Bressan G, Chemello R, Gravina MF, Gambi MC, Peirano A, Cocito S, Rosso A, Tursi A (2009) Other bioconcretions. In: Relini G (ed) Other types bioconstructions. Friuli Museum of Natural History. Udine, Italy, pp 90–114

    Google Scholar 

  • Bromley RG (1978) Bioerosion of Bermuda reefs. Palaeogeogr Palaeoclimatol Palaeoecol 23(3–4):169–197

    Article  Google Scholar 

  • Brookes IA, Stevens RK (1985) Radiocarbon age of rock-boring, Hiatella arctica (Linné) and postglacial sea-level change at Cow Head, Newfoundland. Can J Earth Sci 22:136–140

    Article  Google Scholar 

  • Bull PA, Laverty M (1982) Observations on phytokarst. Zeitschrift für Geomorphologie 26:437–457

    Google Scholar 

  • Burke MA (1994) A quantitative analysis of marine kamenitza on the Carboniferous limestone between Skerries and Loughshinny, Co. Doublin. Thesis submitted as part of B.A. degree, Geography Department, Trinity College, Dublin, 198 p

    Google Scholar 

  • Carter NEA, Viles HA (2005) Bioprotection explored: the story of a little known earth surface process. Geomorphology 67(3–4):273–281

    Article  Google Scholar 

  • Chacón E, Berrendero E, Garcia-Pichel F (2006) Biogeological signatures of microboring cyanobacterial communities in marine carbonates from Cabo Rojo, Puerto Rico. Sediment Geol 185:215–228

    Article  Google Scholar 

  • Chaix E (1895) Contribution a l’etude des lapies: la topographie du desert de Plate. Le Globe 34:67–108

    Google Scholar 

  • Chen C, Dai C-F (2009) Subtidal sabellarid reefs in Hualien, eastern Taiwan. Coral Reefs 28(1):275

    Article  Google Scholar 

  • Chen J, Blume HP, Beyer I (2002) Weathering of rocks induced by lichen colonization, a review. Catena 38:121–146

    Google Scholar 

  • Cocito S (2004) Bioconstruction and biodiversity: their mutual influence. Sci Mar 68(Suppl 1):137–144

    Google Scholar 

  • Conway K, Barrie J, Krautter M (2005) Geomorphology of unique reefs on the western Canadian shelf: sponge reefs mapped by multibeam bathymetry. Geo-Mar Lett 2005:205–213

    Article  Google Scholar 

  • Cooke RU, Warren A, Goudie AS (1993) Desert geomorphology. UCL Press Limited, London

    Google Scholar 

  • Corbel J (1952) Les lapiaz marins. Revue Géographique de Lyon 37:379–380

    Article  Google Scholar 

  • Cowell DW, Ford DC (1983) Karst hydrology of the Bruce Peninsula, Ontario, Canada. J Hydrol 61(1–3):163–168

    Article  Google Scholar 

  • Cucchi F (2009) Kamenitzas. In: Ginés A, Knez M, Slabe T, Dreybrodt W (eds) Karst rock features – karren sculpturing. Carstologia 9. Založba ZRC/ZRC Publishing, Ljubljana, pp 139–150

    Google Scholar 

  • Cvijić J (1924) The evolution of lapiés: a study in karst physiography. Geogr Rev 14:26–49

    Article  Google Scholar 

  • Dalongeville M (1977) Formes littorales de corrosion dans les roches carbonatées au Liban: Etude morphologique. Méditerranée 3:21–33

    Article  Google Scholar 

  • Dalongeville R (1995) Le rôle des organismes constructeurs dans la morphologie des littoraux de la mer Méditerranée: algues calcaires et vermetidés. Norois 165:73–88

    Article  Google Scholar 

  • Dalongeville M, Guilcher A (1982) Les plates-formes à vasques en Méditerranée, notamment leur extension vers le nord. Karst Littoraux, Comite National Français de Géographie, Actes du Colloquium de Perpignan 1:13–22

    Google Scholar 

  • De Waele J, Furlani S (2013) Seawater and biokarst effects on coastal limestones. In: Schroder J, Frumkin A (eds) Treatise on geomorphology. Academic Press, San Diego, pp 341–350

    Google Scholar 

  • De Waele J, Mucedda M, Montanaro L (2009) Morphology and origin of coastal karst landforms in Miocene and Quaternary carbonate rocks along the central-western coast of Sardinia (Italy). Geomorphology 106:26–34

    Article  Google Scholar 

  • Debrat JM (1974) Etude d’un karst calcaire littoral méditerranéen. Exemple du littoral de Nice à Menton. Méditerranée 17(17):63–85

    Article  Google Scholar 

  • Dionne J-C (1964) Notes Sur Les marmites Littorales. Revue de Geographie de Montreal 18(2):244–277

    Google Scholar 

  • Donn TF, Boardman MR (1988) Bioerosion of rocky carbonate coastlines on Andros Island, Bahamas. J Coastal Res 4(3):381–394

    Google Scholar 

  • Doty MS (1957) Rock intertidal surfaces. In: Hedgpeth J (ed) Treatise on marine ecology and paleoecology, vol 67. Memoirs of the Geological Society of America, Boulder, pp 535–585

    Google Scholar 

  • Drew D (2009) Coastal and lacustrine karren in western Ireland. In: Ginés A, Knez M, Slabe T, Dreybrodt W (eds) Karst rock features – karren sculpturing. Carstologia 9. Založba ZRC/ZRC Publishing, Ljubljana, pp 503–512

    Google Scholar 

  • Dreybrodt W (1988) Processes in karst systems: physics, chemistry, and geology. Springer, Berlin

    Book  Google Scholar 

  • Duane MJ, Al-Mishwat AT, Rafique M (2003) Weathering and biokarst development on marine terraces, northwest Morocco. Earth Surf Proc Land 28(13):1439–1449

    Article  Google Scholar 

  • Ekdale AA, Bromley RG, Pemberton SG (1984) Ichnology: the use of trace fossils in sedimentology and stratigraphy. Society of Economic Paleontologists and Mineralogists, Tulsa, pp 108–128

    Google Scholar 

  • Emery KO (1946) Marine solution basins. J Geol 54:209–228

    Article  Google Scholar 

  • Emery KO (1962) Marine geology of Guam, U. S. Geological Survey professional paper 403-B. U. S. Geological Survey, Washington, D.C., pp B1–B76

    Google Scholar 

  • Fairbridge RW (1952) Marine erosion. Seventh Pac Sci Congr Proc 3:347–359

    Google Scholar 

  • Fairbridge RW (1982) Karst coast. In: Schwartz ML (ed) The encyclopedia of beaches and coastal environments. Hutchinson Ross Publishing Company, Stroudsburg, pp 500–502

    Google Scholar 

  • Focke JW (1978) Limestone cliff morphology on Curaçao (Netherlands Antilles), with special attention to the origin of notches and vermetid/coralline algal surf benches (“corniches”, “trottoirs”). Zeitschrift für Geomorphologie N.F. 22:329–349

    Google Scholar 

  • Folk R, Roberts H, Moore C (1973) Black phytokarst from hell, Cayman Islands, British West Indies. Geol Soc Am Bull 84:2351–2360

    Article  Google Scholar 

  • Ford DC, Williams PW (1989) Karst geomorphology and hydrology. Unwin Hyman, Winchester, 320 p

    Book  Google Scholar 

  • Fórnos JJ, Pons GX, Gómez-Pujol L, Belaguer P (2006) The role of biological processes and rates of downwearing due to grazing organisms on Mallorcan carbonate coasts (western Mediterranean). Zeitschrift für Geomorphologie Supplementband 44:161–181

    Google Scholar 

  • Frey RW (1973) Concepts in the study of biogenic sedimentary structures. J Sediment Res 43:6–19

    Google Scholar 

  • Furlani S, Cucchi F, Forti P, Rossi A (2009) Comparison between coastal and inland karst limestone lowering rates in the northeastern Adriatic region (Italy and Croatia). Geomorphology 104:73–81

    Article  Google Scholar 

  • Giaccone T, Giaccone G, Basso D, Bressan G (2009) Algae. In: Relini G (ed) Marine bioconstructions. Friuli Museum of Natural History. Udine, Italy, pp 29–48

    Google Scholar 

  • Gill ED, Lang JG (1983) Micro-erosion meter measurements of rock wear on the Otway coast of southeast Australia. Mar Geol 52:141–156

    Article  Google Scholar 

  • Ginés À (2009) Karrenfield landscapes and karren landforms. In: Ginés A, Knez M, Slabe T, Dreybrodt W (eds) Karst rock features – karren sculpturing. Carstologia 9. Založba ZRC/ZRC Publishing, Ljubljana, pp 13–24

    Google Scholar 

  • Ginés À, Ginés J (1995) Les formes exocarstiques de l’illa de Mallorca. ENDINS 20. Mon Soc Hist Nat Balears 3:59–70

    Google Scholar 

  • Ginés À, Knez M, Slabe T, Dreybrodt W (eds) (2009) Karst rock features – karren sculpturing. Carstologia 9. Založba ZRC/ZRC Publishing, Ljubljana

    Google Scholar 

  • Ginsburg RN (1953) Intertidal erosion on the Florida keys. B Mar Sci 3:55–69

    Google Scholar 

  • Ginsburg RN, Schroeder JH (1973) Growth and submarine fossilization of algal cup reefs, Bermuda. Sedimentology 20(4):575–614

    Article  Google Scholar 

  • Glaub I, Golubic S, Gektidis M, Radtke G, Vogel K (2007) Microborings and microbial endoliths: geological implications. In: Miller WC (ed) Trace fossils: concepts, problems, prospects. Elsevier, Amsterdam, pp 368–381

    Chapter  Google Scholar 

  • Glumac B, Berrios L, Greer L, Curran HA (2004) Holocene tufa-coated serpulid mounds from the Dominican Republic: depositional and diagenetic history, with comparison to modern serpulid aggregates from Baffin Bay, Texas. In: Proceedings of the 11th symposium on the geology of the Bahamas and other carbonate regions, Gerace Research Centre, San Salvador, pp 49–65

    Google Scholar 

  • Gómez-Pujol L, Fornós JJ (2009) Coastal karren in the Balearic Islands. In: Ginés A, Knez M, Slabe T, Dreybrodt W (eds) Karst rock features – karren sculpturing. Carstologia 9. Založba ZRC/ZRC Publishing, Ljubljana, pp 487–502

    Google Scholar 

  • Gómez-Pujol L, Fornós JJ (2010) Coastal karren features in temperate microtidal settings: spatial organization and temporal evolution. Studia Universitatis Babeş-Bolyai, Geologia 55(1):37–44

    Article  Google Scholar 

  • Grimes KG (2001) Karst features of Christmas Island (Indian Ocean). Helictite 37(2):41–58

    Google Scholar 

  • Guilcher A (1953) Essai sur la zonation et la distribution des formes littorals de dissolution du calcaire. Ann Geogr 62:161–179

    Article  Google Scholar 

  • Guilcher A (1958) Coastal corrosion forms in limestones around the Bay of Biscay. Scot Geogr Mag 74(3):137–149

    Article  Google Scholar 

  • Hadfield MG, Kay EA, Gillette MU, Lloyd MC (1972) The Vermetidae (mollusca gastropoda) of the Hawaiian Islands. Mar Biol 12:81–98

    Google Scholar 

  • Hanor JS (1978) Precipitation of beachrock cements: mixing of marine and meteoric waters vs. CO2-degassing. J Sediment Petrol 48:489–501

    Google Scholar 

  • Higgins CG (1980) Nips, notches, and the solution of coastal limestone: an overview of the problem with examples from Greece. Estuar Coast Mar Sci 10(1):15–30

    Article  Google Scholar 

  • Hodgkin EP (1964) Rate of erosion of intertidal limestone. Zeitschrift für Geomorphologie 8(4):385–392

    Google Scholar 

  • Holbye U (1989) Bowl-karren in the littoral karst of Nord-Arnoy, Norway. Cave Sci 16:19–26

    Google Scholar 

  • Holmes G, Ortiz J-C, Schönberg CHL (2009) Bioerosion rates of the sponge Cliona orientalis Thiele, 1900: spatial variation over short distances. Facies 55:203–211

    Article  Google Scholar 

  • Hopley D (2005a) Coral reefs. In: Schwartz ML (ed) Encyclopedia of coastal science. Kluwer, Dordrecht, pp 343–349

    Google Scholar 

  • Hopley D (2005b) Trottoirs. In: Schwartz ML (ed) Encyclopedia of coastal science. Kluwer, Dordrecht, p 1017

    Google Scholar 

  • Horwitz MH, Roberts TM (2010) Geomorphic zoning and eogenetic karst on limestones within the supratidal environment: San Salvador, Bahamas. Studia Universitatis Babeş-Bolyai, Geologia 55(1):17–27

    Article  Google Scholar 

  • Huggett RJ (2007) Fundamentals of geomorphology. Routledge, Abingdon

    Google Scholar 

  • Hutchings PA, Peyrot-Clausade M (2002) The distribution and abundance of boring species of polychaetes and sipunculans in coral substrates in French Polynesia. J Exp Mar Biol Ecol 269:101–121

    Article  Google Scholar 

  • Jacobsen G, Hill PJ, Ghassemi F (1997) Geology and hydrogeology of Nauru Island. In: Vacher HL, Quinn T (eds) Geology and hydrology of carbonate Islands, vol 54, Developments in sedimentology. Elsevier Science BV, Amsterdam

    Google Scholar 

  • Jennings JN (1971) Karst. Australian National University Press, Canberra, 252 p

    Google Scholar 

  • Jennings JN (1985) Karst geomorphology. Basil Blackwell, Oxford, p 293

    Google Scholar 

  • Jones B (1989) The role of microorganisms in phytokarst development on dolostones and limestones, Grand Cayman, British West Indies. Can J Earth Sci 26:2204–2213

    Article  Google Scholar 

  • Jones B (2010) Speleothems in a wave-cut notch, Cayman Brac, British West Indies: the integrated product of subaerial precipitation, dissolution, and microbes. Sediment Geol 232:15–34

    Article  Google Scholar 

  • Jones B, Hunter I (1995) Vermetid buildups from grand Cayman British West Indies. J Coastal Res 4:973–983

    Google Scholar 

  • Kázmér M, Taboroši D (2012) Bioerosion on the small scale – examples from the tropical and subtropical littoral. Hantkeniana 7:37–94, incl. 96 figs and 1 table, Budapest, Hungary

    Google Scholar 

  • Kelletat D (1985) Bio-destruktive und bio-konstruktive Formelemente en den spanischen Mittelmeerküsten. Geodynamik 6:1–20

    Google Scholar 

  • Kelletat D (1988) Quantitative investigations on coastal bioerosion in higher latitudes: an example from northern Scotland. Geoökodynamik, Bensheim 9:41–51

    Google Scholar 

  • Kempf M, Laborel J (1968) Formations de Vermets et d’Algues calcaires des côtes du Brésil. Rec Trav Stat Mar Endoume 43:9–23

    Google Scholar 

  • Kershaw S, Guo L (2001) Marine notches in coastal cliffs: indicators of relative sea-level change, Perachora Peninsula, central Greece. Mar Geol 179(3–4):213–228

    Article  Google Scholar 

  • Kleemann K (2001) Marine bioerosion. Lecture given at the University of Vienna, compiled by P Madl. Available on-line at: biophysics.sbg.ac.at/transcript/bioeros.pdf. Last Accessed 16 Mar 2012

  • Knight J (2005) Controls on the formation of coastal ventifacts. Geomorphology 64:243–253

    Article  Google Scholar 

  • Kobluk DR, Risk JM (1977) Rate and nature of infestation of a carbonate substratum by a boring algae. J Exp Mar Biol Ecol 27:107–115

    Article  Google Scholar 

  • Kogure T, Matsukura Y (2010) Critical notch depths for failure of coastal limestone cliffs: case study at Kuro-shima Island, Okinawa, Japan. Earth Surf Proc Land 35(9):1044–1056

    Article  Google Scholar 

  • Krumbein WE (1979) Photolithotropic and chemoorganotrophic activity of bacteria and algae as related to beachrock formation and degradation (Gulf of Aqaba, Sinai). Geomicrobiology 1:139–203

    Article  Google Scholar 

  • Laborel J (2005) Algal rims. In: Schwartz ML (ed) Encyclopedia of coastal science. Kluwer, Dordrecht, pp 24–25

    Google Scholar 

  • Laborel J, Laborel-Deguen F (1994) Biological indicators of relative sea-level variation and of co-seismic displacements in the Mediterranean area. J Coastal Res 10(2):395–415

    Google Scholar 

  • Laborel J, Laborel-Deguen F (1995) Biological indicators of Holocene sea-level and climatic variations on rocky coasts of tropical and subtropical regions. Quatern Int 31:53–60

    Article  Google Scholar 

  • Laborel J, Morhange R, Lafont J, Campion L, Laborel-Deguen F, Sartoretto S (1994) Biological evidence of sea level rise during the last 4500 years on the rocky coasts of continental southwestern France and Corsica. Mar Geol 120:203–223

    Article  Google Scholar 

  • Ley RG (1977) The influence of lithology on marine karren. Abhandlung zur Karst und Höhlenkunde 15:81–100

    Google Scholar 

  • Ley RG (1979) The development of marine karren along the Bristol Channel Coastline. Zeitschrift für Geomorphologie Supplementband 32:75–89

    Google Scholar 

  • Liu P-J, Hsieh H-L (2000) Burrow architecture of the spionid polychaete Polydora villosa in the corals Montipora and Porites. Zool Stud 39(1):47–54

    Google Scholar 

  • Lovrić AŽ, Rac M, Milenković MH (2002) Diversity of old-Croatian names for seaweeds and maritime nature in the Adriatic Islands. Nat Croat 11(4):455–477

    Google Scholar 

  • Lundberg J (1977) Karren of the littoral zone, Burren District, Co. Clare, Ireland. In: Proceedings of the 7th international speleological congress, Sheffield, pp 291–293

    Google Scholar 

  • Lundberg J (2004) Coastal karst. In: Gunn J (ed) Encyclopedia of cave and karst science. Fitzroy Dearborn, New York/London, pp 231–233

    Google Scholar 

  • Lundberg J (2009) Coastal karren. In: Ginés A, Knez M, Slabe T, Dreybrodt W (eds) Karst rock features – karren sculpturing. Carstologia 9. Založba ZRC/ZRC Publishing, Ljubljana, pp 249–264

    Google Scholar 

  • Lundberg J, Lauritzen SE (2002) The search for an arctic coastal karren model in Norway and Spitzbergen. In: Hewitt K, Byrne ML, English M, Young G (eds) Landscapes in transition. Kluwer Academic Publishers, Dordrecht, pp 185–203

    Chapter  Google Scholar 

  • Macfadyen WA (1930) The undercutting of coral reef limestone on the coasts of some Islands in the Red Sea. Geogr J 75:27–34

    Article  Google Scholar 

  • Malis CP, Ford DC (1995) Littoral karren along the western shore of Newfoundland. Geol Soc Am, Abstracts with Programs 27(6):A9–A56

    Google Scholar 

  • Mark H (2009) Karst landscapes in the Bay of Ha Long, Vietnam. Geographische Rundschau International Edition 5(1):48–51

    Google Scholar 

  • Martel EA (1921) Nouveau traité des eaux souterraines. Doin, Paris, 838 p

    Google Scholar 

  • Matsukura Y, Matsuoka N (1991) Rates of tafoni weathering on uplifted shore platforms in Nojima-zaki, Boso Peninsula, Japan. Earth Surf Proc Land 16:51–56

    Article  Google Scholar 

  • Miller WR, Mason TR (1994) Erosional features of coastal beachrock and eolianite outcrops in Natal and Zululand, South Africa. J Coastal Res 10:374–394

    Google Scholar 

  • Milliman JD (1974) Marine carbonates. [Part 1, recent sedimentary carbonates]. Springer, New York, 375 p

    Book  Google Scholar 

  • Mokady O, Lazar B, Loya Y (1996) Echinoid bioerosion as a major structuring force of Red Sea coral reefs. Biol Bull 190:367–372

    Article  Google Scholar 

  • Molinier R (1955) Les plate-formes et corniches récifals de vermets (Vermetus cristatus Biondi) en Méditerranée occidentale. Comptes Rendus de l’Académie des Sciences 240:361–363

    Google Scholar 

  • Monroe WH (1970) A glossary of karst terminology, Water supply paper, 1899-K. USGS, Washington, pp 1–26

    Google Scholar 

  • Moore DG (1954) Origin and development of sea caves. Bull Natl Speleological Soc 16:71–76

    Google Scholar 

  • Morton B, Scott PJB (1980) Morphological and functional specializations of the shell, musculature and pallial glands in the Lithophaginae (Mollusca: Bivalvia). J Zool Soc London 192:179–203

    Article  Google Scholar 

  • Moses CA (2003) Observations on coastal biokarst, Hells Gate, Lord Howe Island, Australia. Zeitschrift für Geomorphologie 47:83–100

    Google Scholar 

  • Moses CA, Smith BJ (1993) A note on the role of Colema auriforma in solution basin development on a Carboniferous limestone substrate. Earth Surf Proc Land 18:363–368

    Article  Google Scholar 

  • Moses CA, Smith BJ (1994) Limestone weathering in the supratidal zone: an example from Mallorca. In: Robinson DA, Williams RBG (eds) Rock weathering and landform evolution. John Wiley and Sons, Chichester, pp 433–452

    Google Scholar 

  • Mylroie JE, Carew JL (1990) The flank margin model for dissolution cave development in carbonate platforms. Earth Surf Proc Land 15:413–424

    Article  Google Scholar 

  • Mylroie JE, Mylroie JR (2009) Coastal eogenetic karren of San Salvador Island. In: Ginés A, Knez M, Slabe T, Dreybrodt W (eds) Karst rock features – karren sculpturing, Carstologia 9. Založba ZRC/ZRC Publishing, Ljubljana, pp 475–485

    Google Scholar 

  • Naylor LA, Viles HA, Carter NEA (2002) Biogeomorphology revisited: looking towards the future. Geomorphology 47:3–14

    Article  Google Scholar 

  • Neumann AC (1966) Observations on coastal erosion in Bermuda and measurements of the boring rates of the sponge Cliona lampa. Limnol Oceanogr 11:92–108

    Article  Google Scholar 

  • Newell ND, Purdy EG, Imbrie J (1960) Bahamian oölitic sand. J Geol 68(5):481–497

    Article  Google Scholar 

  • Newman WA, Abbott DP (1980) Cirripedia. In: Morris RH, Abbott DP, Haderlie EC (eds) Intertidal invertebrates of California. Stanford University Press, Stanford, pp 504–535

    Google Scholar 

  • Norton TA, Hawkins SJ, Manley NL, Williams GA, Watson DC (1990) Scraping a living: a review of littorinid grazing. Hydrobiologia 193(1):117–138

    Article  Google Scholar 

  • Orme R, Riding R (1995) Halimeda segment reefs of the northern Great Barrier Reef. British Sedimentological Research Group. In: 1995 Annual meeting abstracts, Durham, p 64

    Google Scholar 

  • Palmer HS (1927) Lapies in Hawaiian Basalts. Geogr Rev 17(4):627–631

    Article  Google Scholar 

  • Palmer M, Fórnos JJ, Balaguer P, Gómez-Pujol L, Pons GX, Villanueva G (2003) Spatial and seasonal variability of the macro-invertebrate community of a rocky coast in Mallorca (Balearic Islands): implications for bioerosion. Hydrobiologia 501:13–21

    Article  Google Scholar 

  • Paskoff RP (2005) Karst coasts. In: Schwartz ML (ed) Encyclopedia of coastal science. Kluwer, Dordrecht, pp 581–586

    Chapter  Google Scholar 

  • Pirazzoli PA (1986) Marine notches. In: Plassche OVd (ed) Sea-level research: a manual for the collection and evaluation of data. Geo Books, Zurich

    Google Scholar 

  • Radtke G, Le Campion-Alsumard T, Golubic S (1996) Microbial assemblages of the bioerosional “notch” along tropical limestone coasts. Algol Stud 83:469–482

    Google Scholar 

  • Rasmussen KA, Frankenberg EW (1990) Intertidal bioerosion by the chiton Acanthopleura granulata: San Salvador, Bahamas. B Mar Sci 47/3:680–695

    Google Scholar 

  • Reece M, Mylroie JE, Jenson JW (2006) Notches in carbonate cliffs and hillslopes: origin and implications. In: Davis RL, Gamble DW (eds) Proceedings of the 12th symposium on the geology of the Bahamas and other carbonate regions, Gerace Research Centre, San Salvador, Bahamas, pp 143–152

    Google Scholar 

  • Reid RP, Macintyre IG, James NP (1990) Internal precipitation of microcrystalline carbonate: a fundamental problem for sedimentologists. Sediment Geol 68(3):163–170

    Article  Google Scholar 

  • Relini G (2009) Introduction. In: Relini G (ed) Marine bioconstructions. Friuli Museum of Natural History. Udine, Italy, pp 7–12

    Google Scholar 

  • Revelle R, Emery KO (1957) Chemical erosion of beach rock and exposed reef rock, U. S. Geological Survey professional paper 260-T. U. S. Geological Survey, Washington, pp 699–706

    Google Scholar 

  • Richardson K, Carling PA (2005) A typology of sculpted forms in open bedrock channels, Geological Society of America, Special Paper 392. Geological Society of America, Boulder, p 108

    Google Scholar 

  • Richmond BM (2002) Overview of Pacific island carbonate beach systems. In: Robbins LL, Magoon OT, Ewing L (eds) Carbonate beaches 2000, Key Largo, Florida, American Society of Civil Engineers conference proceedings, 5–8 Dec 2000, pp 218–228

    Google Scholar 

  • Riding R (2002) Structure and composition of organic reefs and carbonate mud mounds: concepts and categories. Earth Sci Rev 58:163–231

    Article  Google Scholar 

  • Risk MJ, McGeachy JK (1978) Aspects of bioerosion of modern Caribbean reefs. Rev Biol Trop 26:85–105

    Google Scholar 

  • Robbins LL, Blackwelder PL (1992) Biochemical and ultrastructural evidence for the origin of whitings: a biologically induced calcium carbonate precipitation mechanism. Geology 20:464–468

    Article  Google Scholar 

  • Russell RJ (1962) Origin of beach rock. Zeitschrift für Geomorphologie 6:1–16

    Google Scholar 

  • Rust D, Kershaw S (2000) Holocene tectonic uplift patterns in northeastern Sicily: evidence from marine notches in coastal outcrops. Mar Geol 167:105–126

    Article  Google Scholar 

  • Safriel UN (1975) The role of vermetid gastropods in the formation of Mediterranean and Atlantic Reefs. Oecologia 20(1):85–101

    Article  Google Scholar 

  • Salomon J-N (2006) Les tsingy et leur genese. Spelunca 103:45–50

    Google Scholar 

  • Sawyer JA, Zuschin M (2010) Intensities of drilling predation of molluscan assemblages along a transect through the northern Gulf of Trieste (Adriatic Sea). Palaeogeogr Palaeoclimatol Palaeoecol 285(3–4):152–173

    Article  Google Scholar 

  • Schneider J (1976) Biological and inorganic factors in the destruction of limestone coasts. Contrib Sedimentology 6:1–112

    Google Scholar 

  • Schneider J, Le Campion Alsumard T (1999) Construction and destruction of carbonates by marine and freshwater cyanobacteria. Eur J Phycol 34:417–426

    Article  Google Scholar 

  • Schneider J, Torunski H (1983) Biokarst on limestone coasts, morphogenesis and sediment production. Mar Ecol 4:45–63

    Article  Google Scholar 

  • Schoppe S, Werding B (1996) The Boreholes of the Sea Urchin Genus Echinometra (Echinodermata: Echinoidea: Echinometridae) as a Microhabitat in Tropical South America. Mar Ecol 17(1–3):181–186

    Article  Google Scholar 

  • Scoffin TP (1970) A conglomeratic beachrock in Bimini, Bahamas. J Sediment Petrol 40:756–759

    Article  Google Scholar 

  • Scoffin TP, Stoddart DR (1983) Beachrock. In: Goudie AS, Pye K (eds) Chemical sediments and geomorphology: precipitates and residua in the near-surface environment. Academic, London, pp 401–425

    Google Scholar 

  • Silenzi S, Antonioli F, Chemello R (2004) A new marker for sea surface temperature trend during the last centuries in temperate areas: Vermetid reef. Global Planet Change 40:105–114

    Article  Google Scholar 

  • Simms MJ (1990) Phytokarst and photokarren in Ireland. Cave Sci 17:131–133

    Google Scholar 

  • Southward AJ (1958) The zonation of plants and animals on rocky sea shores. Biol Rev 33(2):137–177

    Google Scholar 

  • Spencer T (1985a) Marine erosion rates and coastal morphology of reef limestones on Grand Cayman Island, West Indies. Coral Reefs 4:59–70

    Article  Google Scholar 

  • Spencer T (1985b) Weathering rates on a Caribbean reef limestone; results and implications. Mar Geol 69:195–201

    Article  Google Scholar 

  • Spencer T (1988) Limestone coastal morphology: the biological contribution. Prog Phys Geog 12:66–101

    Article  Google Scholar 

  • Spencer T, Viles H (2002) Bioconstruction, bioerosion and disturbance on tropical coasts: coral reefs and rocky limestone shores. Geomorphology 48:23–50

    Article  Google Scholar 

  • Stephenson WJ, Kirk RM (1998) Rates and patterns of erosion on shore platforms, Kaikoura, South Island, New Zealand. Earth Surf Proc Land 23:1071–1085

    Article  Google Scholar 

  • Stephenson TA, Stephenson A (1949) The universal features between tide marks on rocky coasts. J Ecol 37:289–305

    Article  Google Scholar 

  • Stephenson TA, Stephenson A (1972) Life between tidemarks on rocky shores. Freeman, San Francisco, 425 p

    Google Scholar 

  • Stoddart DR, Cann JR (1965) Nature and origin of beach rock. J Sediment Petrol 35:243–273

    Article  Google Scholar 

  • Stoddart DR, Taylor JD, Farrow GR, Fosberg FR (1971) The geomorphology of Aldabra. In: Westoll TS, Stoddart DR (eds) A discussion on the results of the Royal Society Expedition to Aldabra, 1967–1968. Philosophical Transactions of the Royal Society, London, pp 31–65

    Google Scholar 

  • Stoessell RK, Ward WC, Ford BH, Schuffert JD (1989) Water chemistry and CaCO3 dissolution in the saline part of an open-flow mixing zone, coastal Yucatán Peninsula, Mexico. Bull Geol Soc Am 101:159–169

    Article  Google Scholar 

  • Stone ED, Weiner S, Addadi L (2005) Morphology of goethite crystals in developing limpet teeth: assessing biological control over mineral formation. Cryst Growth Des 5(6):2131–2138

    Article  Google Scholar 

  • Sweeting MM (1972) Karst landforms. Macmillan/ Columbia University Press, London/New York

    Google Scholar 

  • Sweeting MM, Lancaster N (1982) Solutional and wind erosion forms on limestone in the Central Namib Desert. Zeitschrift für Geomorphologie 26:197–207

    Google Scholar 

  • Taboroši D, Stafford K (2004) Littoral dripstone and flowstone – non-spelean carbonate secondary deposits. Int J Speleol 32:85–106

    Article  Google Scholar 

  • Taboroši D, Jenson JW, Mylroie JE (2004) Karren features in Island Karst: Guam, Mariana Islands. Zeitschrift für Geomorphologie 48:369–389

    Google Scholar 

  • Taboroši D, Mylroie JE, Hirakawa K (2006) Stalactites on tropical cliffs: remnants of breached caves or subaerial tufa deposits? Zeitschrift für Geomorphologie 50:117–139

    Google Scholar 

  • Terry JP, Nunn PD (2003) Interpreting features of carbonate geomorphology on Niue Island, a raised coral atoll. Zeitschrift für Geomorphologie 131:43–57

    Google Scholar 

  • Torunski H (1979) Biological erosion and significance for the morphogenesis of limestone coasts and for nearshore sedimentation (Northern Adriatic). Senckenbergiana Maritima 11:193–265

    Google Scholar 

  • Trenhaile AS (1987) The geomorphology of rocky coasts. Clarendon, Oxford, 384 p

    Google Scholar 

  • Trenhaile AS (2003a) Trottoir. In: Goudie A (ed) Encyclopedia of geomorphology. Routledge, London, p 1069

    Google Scholar 

  • Trenhaile AS (2003b) Corniche. In: Goudie A (ed) Encyclopedia of geomorphology. Routledge, London, p 191

    Google Scholar 

  • Tribollet A (2008) The boring microflora in modern coral reef ecosystems: a review of its roles. In: Wisshak M, Tapanila L (eds) Current developments in bioerosion. Springer, Berlin, pp 67–94

    Chapter  Google Scholar 

  • Tribollet A, Golubic S (2011) Reef bioerosion: agents and processes. In: Dubinsky Z, Stambler N (eds) Coral reefs: an ecosystem in transition, part 5. Springer, Dordrecht, pp 435–449

    Chapter  Google Scholar 

  • Trimmel H (1965) Speläologisches Fachwörterbuch. Landesverein für Höhlenkunde in Wien und Niederösterreich, Wien, 109 p

    Google Scholar 

  • Trudgill ST (1976) The subaerial and subsoil erosion of limestones on Aldabra Atoll, Indian Ocean. Zeitschrift für Geomorphologie Supplementband 26:201–210

    Google Scholar 

  • Trudgill ST (1979) Spitzkarren on calcarenites, Aldabra Atoll, Indian Ocean. Zeitschrift für Geomorphologie Supplementband 32:67–74

    Google Scholar 

  • Trudgill ST (1985) Limestone geomorphology. Longman, London/New York, 196 p

    Google Scholar 

  • Trudgill ST (1987) Bioerosion on intertidal limestone, Co. Clare, Eire: Zonation, process, and form. Mar Geol 74:99–109

    Article  Google Scholar 

  • Trudgill ST (2003) Boring organism. In: Goudie A (ed) Encyclopedia of geomorphology. Routledge, London, pp 90–92

    Google Scholar 

  • Trudgill ST, High CJ, Hanna KK (1981) Improvements to the micro-erosion meter (MEM). British Geomorphol. Research Group. Tech Bull 29:3–17

    Google Scholar 

  • Tschang HL (1966) Marine potholes of Hong Kong. Chung Chi Journal 6:50–58

    Google Scholar 

  • Veress M (2010) Karst environments: karren formation in high mountains. Springer Verlag, Dordrecht/Heidelberg, 230 p

    Book  Google Scholar 

  • Veress M, Szunyogh G, Tóth G, Zentai Z, Czöpek I (2006) The effect of the wind on karren formation on the Island of Diego De Almagro (Chile). Zeitschrift für Geomorphologie 50:425–445

    Google Scholar 

  • Vescogni A, Bosellini FR, Reuter M, Bracher TC (2008) Vermetid reefs and their use as palaeobathymetric markers: new insights from the Late Miocene of the Mediterranean (Southern Italy, Crete). Palaeogeogr Palaeoclimatol Palaeoecol 267:89–101

    Article  Google Scholar 

  • Viles HA (1984) Biokarst: review and prospect. Prog Phys Geog 8:523–542

    Article  Google Scholar 

  • Viles HA (1987) Blue-green algae and terrestrial weathering on Aldabra atoll: an SEM and light microscope study. Earth Surf Proc Land 12:319–330

    Article  Google Scholar 

  • Viles HA, Trudgill ST (1984) Long term remeasurements of micro-erosion meter rates, Aldabra Atoll, Indian Ocean. Earth Surf Proc Land 9:89–94

    Article  Google Scholar 

  • Wargo RN, Ford SE (1993) The effects of shell infestation by Polydora sp. and infestation by Haplosporidium nelsoni (MSX) on the tissue condition of oysters, Crassotrea virginica. Estuaries 16:229–234

    Article  Google Scholar 

  • Webb GE, Jell JS, Baker JC (1999) Cryptic intertidal microbialites in beachrock, Heron Island, Great Barrier Reef: implications for the origin of microcrystalline beachrock cement. Sediment Geol 126(1–4):317–334

    Article  Google Scholar 

  • Wentworth CK (1939) Marine bench-forming processes II, solution benching. J Geomorph 2:3–25

    Google Scholar 

  • Wentworth CK (1944) Potholes, pits and pans, subaerial and marine. J Geol 52:117–130

    Article  Google Scholar 

  • Whipple K, Hancock G, Anderson R (2000) River incision into bedrock: mechanics and relative efficacy of plucking, abrasion, and cavitation. Geol Soc Am Bull 112:490–503

    Article  Google Scholar 

  • White WB (1988) Geomorphology and hydrology of karst terrains. Oxford Press, New York, 464 p

    Google Scholar 

  • Wilkinson CR (1983) Role of sponges in coral reef structural processes. In: Barnes DJ (ed) Perspectives on coral reefs. Australian Institute of Marine Sciences and B. Clouston, Townsville/Canberra, pp 263–274

    Google Scholar 

  • Williams JA, Margolis SV (1974) Sipunculid burrows in coral reefs: evidence for chemical and mechanical excavation. Pac Sci 28(4):357–359

    Google Scholar 

  • Wilson MA (2007) Macroborings and the evolution of marine bioerosion. In: Miller WC (ed) Trace fossils: concepts, problems, prospects. Elsevier, Amsterdam, pp 356–367

    Chapter  Google Scholar 

  • Wisshak M (2006) High-latitude bioerosion: the Kosterfjord experiment, vol 109, Lecture notes in earth sciences. Springer, Berlin/New York, pp 1–122

    Book  Google Scholar 

  • Wziatek D, Vousdoukas MV, Terefenko P (2011) Wave-cut notches along the Algarve coast, S. Portugal: characteristics and formation mechanisms. J Coastal Res Special Issue 64:855–859 (Proceedings of the 11th international coastal symposium, Szczecin, Poland)

    Google Scholar 

  • Zseni A (2009) Subsoil shaping. In: Ginés A, Knez M, Slabe T, Dreybrodt W (eds) Karst rock features–karren sculpturing, Carstologia 9. Založba ZRC/ZRC Publishing, Ljubljana, pp 103–121

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Danko Taboroši or Miklós Kázmér .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Taboroši, D., Kázmér, M. (2013). Erosional and Depositional Textures and Structures in Coastal Karst Landscapes. In: Lace, M., Mylroie, J. (eds) Coastal Karst Landforms. Coastal Research Library, vol 5. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5016-6_2

Download citation

Publish with us

Policies and ethics