Skip to main content
Log in

Scraping a living: a review of littorinid grazing

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Littorinid snails are predominantly herbivorous and the versatility of their radulae enables them to feed on a variety of macroscopic and microscopic plants in a diversity of habitats. Some are selective feeders preferring some species of algae to others, and rejecting some even after a prolonged period of starvation. Different species of snail exhibit different preferences. The factors affecting the attractiveness and edibility of food plants are discussed and food value considered.

Foraging behaviour of littorinids is briefly reviewed in relation to the influence of chemical cues from the algae. Littorinids appear to be able to select or reject algae without having ingested them, having perceived the plants from a distance, moving towards favoured foods (or habitat-providing plants) and away from those that it rejects. The nature of the chemical cues emitted by the algae is discussed. Temporal patterns of foraging activity show some evidence of an endogenous component which can be overridden by responses to environmental conditions. These patterns place restraints on energy intake.

The structural and chemical defences used by algae against littorinid grazing are considered. The importance of polyphenolic compounds is evaluated. The effects of grazing as a selective agency and a factor influencing algal populations are discussed. There is some evidence that life history patterns are a response to grazing. The influence of external physical factors, such as salinity on grazing pressure is demonstrated.

Finally, the impact of littorinid snails on intertidal communities is assessed in relation to their abundance and biogeographical distribution. The relative importance of littorinids is contrasted on shores possessing or lacking limpets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ankel, W. E., 1937. Wie frisst Littorina? 1. Radula. Beweg. Fressp. Senckenberg. 19: 317–333.

    Google Scholar 

  • Bate-Smith, E. C., 1973. Haemanalysis of tannins: The concept of relative astringency. Phytochemistry 12: 907–912.

    Google Scholar 

  • Bebout, B., 1986. The role of marine fungi in the nutrition of the saltmarsh periwinkle, Littorina. Ph.D. thesis Univ. N. Carolina Chapel Hill.

    Google Scholar 

  • Behrens, S. Y., 1974. Ecological interactions of three Littorina (Gastropoda, Prosobranchia) along the West Coast of North America. Ph.D. thesis, University of Oregon.

  • Behrens, S. Y., 1976. Range extension in Littorina sitkana Phillippi, 1845, and range contraction in Littorina planaxis Phillippi, 1847. Veliger 19: 368.

    Google Scholar 

  • Behrens, S. Y. & R. A. Mansour, 1987. Growth inhibition of native Littorina saxatilis (Olivi) by introduced L. littorea (L.). J. exp. mar. Biol. Ecol. 105: 187–196.

    Google Scholar 

  • Bertness, M. D., 1984. Habitat and community modification by an introduced herbivorous snail. Ecology 65: 370–381.

    Google Scholar 

  • Bertness, M. D., P. O. Yund & A. F. Brown, 1983. Snail grazing and the abundance of algal crusts on a sheltered New England rocky beach. J. exp. mar. Biol. Ecol. 71: 147–164.

    Google Scholar 

  • Branch, G. M., 1979. Food as a limiting resource for intertidal herbivores. S. African J. Sci. 75: 562.

    Google Scholar 

  • Branch, G. M., 1984. Competition between marine organisms: Ecological and evolutionary implications. Oceanogr. Mar. Biol. Ann. Rev. 22: 429–593.

    Google Scholar 

  • Branch, G. M. & M. L. Branch, 1981a. Competition in Bembicium auratum (Gastropoda) and its effect on microalgal standing stock in mangrove muds. Oecologia (Berl.) 46: 106–114.

    Google Scholar 

  • Branch, G. M. & M. L. Branch, 1981b. Experimental analysis of intraspecific competition in an intertidal gastropod, Littorina unifasciata. Aust. J. mar. Freshwat. Res. 32: 573–589.

    Google Scholar 

  • Bray, C. J., 1974. A study of the mobility of L. obtusata. MSc thesis in Ecology. University of Wales.

  • Brenchley, G. A., 1982. Predation on encapsulated larvae by adults: effects of introduced species on the gastropod Ilyanassa obsoleta. Mar. Ecol. Progr. Ser. 9: 235–262.

    Google Scholar 

  • Brenchley, G. A., 1987. Herbivory in juvenile Ilyanassa obsoleta Neogastropoda. Veliger 30: 167–172.

    Google Scholar 

  • Calow, P., 1974. Some observations on locomotory strategies and their metabolic effects in two species of freshwater gastropods, Ancylus fluviatilis Mull and Planorbis contortus. Linn. Oecologia 16: 149–161.

    Google Scholar 

  • Carefoot, T. H., 1980. Studies on the nutrition and feeding preferences of Aplysia: development of an artificial diet. J. exp. mar. Biol. Ecol. 42: 241–252.

    Google Scholar 

  • Carlton, J. T., 1982. The historical biogeography of Littorina littorea on the Atlantic coast of North America and implications for the structure of New England intertidal communities. Malacol. Rev. 15: 146.

    Google Scholar 

  • Castenholz, R. W., 1961. The effect of grazing on marine littoral diatom populations. Ecology 42: 783–794.

    Google Scholar 

  • Chapman, M. G., 1986. Assessment of some controls in experimental transplants of intertidal gastropods. J. exp. mar. Biol. Ecol. 103: 181–201.

    Google Scholar 

  • Cheney, D. P., 1982. The role of Littorina littorea grazing on recruitment and distribution of algae in the lower intertidal zone. Malacol. Rev. 15: 147.

    Google Scholar 

  • Clokie, J. J. P. & A. D. Boney, 1980. The assessment of changes in intertidal ecosystems following major reclamation work: framework for interpretation of algal-dominated biota and the use and misuse of data. In J. H. Price, D. E. G. Irvine & W. F. Farnham (eds), The Shore Environment Vol. 2, 609–675.

  • Colman, J. C., 1940. On the faunas inhabiting intertidal seaweed. J. mar. biol. Ass. U.K. 24: 129–184.

    Google Scholar 

  • Cornelius, P. F. S., 1972. Thermal acclimation of some intertidal invertebrates. J. exp. mar. Biol. Ecol. 9: 43–53.

    Google Scholar 

  • Croll, R. P., 1983. Gastropod chemoreception. Biol. Rev. 58: 293–319.

    Google Scholar 

  • Cubit, J. D., 1984. Herbivory and the seasonal abundance of algae on a high intertidal rock shore. Ecology 63: 1905–1917.

    Google Scholar 

  • Dahl, A. L., 1964. Macroscopic algal foods of Littorina planaxis Philippi and Littorina scutulata Gould. Veliger 7: 139–143.

    Google Scholar 

  • Dinter, I. & P. J. Manos, 1972. Evidence of a pheromone in the marine periwinkle Littorina littorea. Veliger 15: 45–47.

    Google Scholar 

  • Fletcher, A., 1980. Marine and maritime lichens of rocky shores: their ecology, physiology and biological interactions in J. P. Price, D. E. G. Irvine & W. F. Farnham (eds), The Shore Environment Vol. 2: 789–842.

  • Foster, M. S., 1964. Microscopic algal food of Littorina planaxis Phillipi and Littorina scutulata Gould. Veliger 7: 149–152.

    Google Scholar 

  • Fralick, R. A., K. W. Turgeon & A. C. Mathieson, 1974. Destruction of kelp populations by Lacuna vincata (Montagu). Nautilus 88: 112–114.

    Google Scholar 

  • Fretter, V. & A. Graham, 1962. British Prosobranch Molluscs. Ray Soc. London. 755 pp.

    Google Scholar 

  • Frid, C. L. J. & R. James, 1988. Interactions between two species of saltmarsh gastropod, Hydrobia ulvae and Littorina littorea. Mar. Ecol. Prog. Ser. 43: 173–179.

    Google Scholar 

  • Frings, H. & C. Frings, 1965. Chemosensory bases of food-finding and feeding in Aplysia juliana (Mollusca, opisthobranchia). Biol. Bull. 128: 211–217.

    Google Scholar 

  • Garrity, S. D., 1984. Some adaptations of gastropods to physical stress on a tropical rocky shore. Ecology 65: 559–574.

    Google Scholar 

  • Geiselman, J. A., 1980. Ecology of chemical defenses of algae against the herbivorous snail, Littorina littorea in the New England rocky intertidal community. Ph.D. thesis Woods Hole Oceanographic Institution, Massachucetts Institute of Technology: 209 pp.

  • Geiselman, J. A. & O. J. McConnell, 1981. Polyphenols in brown algae Fucus vesiculosus and Ascophyllum nodosum: chemical defenses against the marine herbivorous snail, Littorina littorea. J. chem. Ecol. 7: 1115–1133.

    Google Scholar 

  • Gendron, R. P., 1977. Habitat selection and migratory behaviour of the intertidal gastropod, Littorina littorea (L.). J. anim. Ecol. 46: 79–92.

    Google Scholar 

  • Goldstein, J. L. & T. Swain, 1965. The inhibition of enzymes by tannins. Phytochemistry 4: 185–192.

    Google Scholar 

  • Grahame, J., 1973. Assimilation efficiency of Littorina littorea (L.) (Gastropoda Prosobranchiata). J. anim. Ecol. 42: 383–389.

    Google Scholar 

  • Guiterman, J. D., 1970. The population biology of Littorina obtusata (L.) (Gastropoda Prosobranchiata). Ph.D. thesis. University of Wales.

  • Haseman, J. D., 1911. The rhythmical movements of Littorina littorea synchronous with ocean tides. Biol. Bull. 21: 113–121.

    Google Scholar 

  • Hawkins, S. J., 1981. The influence of season and barnacles on the algal colonization of Patella vulgata exclusion areas. J. mar. biol. Ass. U.K. 61: 1–15.

    Google Scholar 

  • Hawkins, S. J. & R. G. Hartnoll, 1983. Grazing of intertidal algae by marine invertebrates. Oceanogr. mar. biol. Ann. Rev. 21: 195–282.

    Google Scholar 

  • Hawkins, S. J. & K. Hiscock, 1983. Some anomalies on Lundy in the distribution of common eulittoral prosobranchs with planktonic larvae. J. moll Stud. 49: 86–88.

    Google Scholar 

  • Hawkins, S. J., D. C. Watson, A. S. Hill, S. Hutchinson, S. Harding, M. A. Kyriakides & T. A. Norton, 1989. A comparison of feeding mechanisms in microphagous herbivorous gastropods in relation to resource partitioning. J. moll. Stud. 55: 151–165.

    Google Scholar 

  • Hunter, R. D. & W. D. Russell-Hunter, 1983. Bioenergetic and community changes in intertidal aufwuchs grazed by Littorina littorea Ecology 64: 761–769.

    Google Scholar 

  • Hylleberg, J. & J. T. Christensen, 1978. Factors affecting the intea-specific competition and size distribution of the periwinkle Littorina littorea (L.). Natura jutl. 20: 193–202.

    Google Scholar 

  • Imrie, D. W., S. J. Hawkins & C. R. McCrohan, 1989. The olfactory-gustatory basis of food preference in the herbivorous prosobranch, Littorina littorea L.. J. moll. Stud. 55: 217–225.

    Google Scholar 

  • Keser, M. & B. R. Larson, 1984. Colonization and growth dynamics of three species of Fucus. Mar. Ecol. Progr. Ser. 15: 125–134.

    Google Scholar 

  • Kohlmeyer, J. & B. Bebout, 1986. On the occurrence of marine fungi in the diet of Littorina angulifera and observations on the behaviour of the periwinkle. P.S.Z.N.I. mar. Ecol. 7: 333–343.

    Google Scholar 

  • Land, M. F., 1968. Functional aspects of the optical and retinal organisation of the mollusc eye. Symposia of the Zoological Society, Lond. 23: 75–96.

    Google Scholar 

  • Lein, T. E., 1980. The effects of Littorina littorea (Gastropoda) grazing on littoral green algae in the inner Oslofjord, Norway. Sarsia 65: 87–92.

    Google Scholar 

  • Lein, T. E., 1984. A method for the experimental exclusion of littorina littorea L. (Gastropoda) and the establishment of fucoid germlings in the field. Sarsia 69: 83–86.

    Google Scholar 

  • Lewis, J. R., 1964. The Ecology of Rocky Shores. English Universities Press, London: 323 pp.

    Google Scholar 

  • Little, C., 1989. Factors governing patterns of foraging activity in littoral marine herbivorous gastropods. J. moll. Stud. 55: 273–284.

    Google Scholar 

  • Little, C., G. A. Williams, D. Morritt, J. A. Perrins & P. Sterling, 1988. Foraging behaviour of Patella vulgata L. in an Irish sea-lough. J. exp. mar. Biol. Ecol. 120: 1–21.

    Google Scholar 

  • Lubchenco, J., 1978. Plant species diversity in a marine intertidal community: Importance of herbivore food preference and algal competitive abilities. Am. Nat. 112: 23–39.

    Google Scholar 

  • Lubchenco, J., 1980. Algal zonation in a New England rocky intertidal community — an experimental analysis. Ecology 61: 33–344.

    Google Scholar 

  • Lubchenco, J., 1982. Effects of grazers and algal competitors on fucoid colonization in tide pools. J. Phycol. 18: 544–550.

    Google Scholar 

  • Lubchenco, J., 1983. Littorina and Fucus: Effects of herbivores, substratum heterogeneity and plant escapes during succession. Ecology 64: 1116–1123.

    Google Scholar 

  • Lubchenco, J. L. & J. D. Cubit, 1980. Heteromorphic life histories of certain marine algae as adaptations to variations in herbivory. Ecology 61: 676–687.

    Google Scholar 

  • Lubchenco, J. L. & S. D. Gaines, 1981. A unified approach to marine plant-herbivore interactions. I. Populations and communities. Annu. Rev. Ecol. Syst. 12: 405–437.

    Google Scholar 

  • Lubchenco, J. & B. A. Menge, 1978. Community development and persistence in a low rocky intertidal zone. Ecol. Monogr. 48: 67–94.

    Google Scholar 

  • Luckens, P. A., 1974. Removal of intertidal algae by herbivores in experimental frames and on shores near Auckland. N.Z. J. mar. Freshwat. Res. 8: 637–654.

    Google Scholar 

  • Mclean, R. F., 1967. Measurements of beachrock erosion by some tropical marine gastropods. Bull. mar. Sci. 17: 551–561.

    Google Scholar 

  • McQuaid, C. D., 1981. The establishment and maintenance of vertical size gradients in populations of Littorina africana knysnaensis (Phillippi) on an exposed rocky shore. J. exp. mar. Biol. Ecol. 54: 77–89.

    Google Scholar 

  • Menge, J. L., 1975. Effect of herbivores on the community structure on the New England rocky intertidal region: distribution, abundance and diversity of algae. Ph.D. Thesis, Harvard University. 165 pp.

  • Menge, B. A., 1976. Organization of the New England rocky intertidal community: Role of predation, competition and environmental heterogeneity. Ecol. Monogr. 49: 355–369.

    Google Scholar 

  • Menge, B. & J. Lubchenco, 1981. Community organization in temperate and tropical rocky intertidal habitats: prey refuges in relation to consumer pressure gradients. Ecol. Monogr. 51: 429–450.

    Google Scholar 

  • Naylor, E., 1985. Tidal rhythmic behaviour of marine animals. In M. S. Laverack (ed.), Physiological Adaptations of Marine Animals. Symposia of the Society for Experimental Biology, Symposium XXXIX. The Company of Biologists Ltd.: 63–93.

  • Newell, G. E., 1958a. The behaviour of Littorina littorea (L.) under natural conditions and its relation to position on the shore. J. mar. biol. Ass. U.K. 37: 229–239.

    Google Scholar 

  • Newell, G. E., 1958b. An experimental analysis of the behaviour of Littorina littorea (L.) under natural conditions and in the laboratory. J. mar. biol. Ass. U.K. 37: 241–266.

    Google Scholar 

  • Newell, G. E., 1965. The eye of Littorina littorea. Proc. zool. Soc. Lond. 144: 75–86.

    Google Scholar 

  • Newell, R. C., 1970. Biology of Intertidal Animals. Lagos Press. London, 555 pp.

    Google Scholar 

  • Newell, R. C., V. I. Pye & M. Ahsanullah, 1971. Factors affecting the feeding rate of the winkle Littorina littorea. Mar. Biol. 9: 138–144.

    Google Scholar 

  • Nicotri, R. E., 1977. Grazing effects of four marine intertidal herbivores on the microflora. Ecology 58: 1020–1032.

    Google Scholar 

  • North, W. J., 1954. Size distribution, erosive activities and gross metabolic efficiency of the marine intertidal snails Littorina planaxis and L. scutulata. Biol. Bull. 106: 185–197.

    Google Scholar 

  • Norton, T. A., 1971. An ecological study of the fauna inhabiting the sublittoral marine algae Saccorhiza polyschides (Lightf) Batt. Hydrobiologia 37: 215–231.

    Google Scholar 

  • Norton, T. A., 1986. The ecology of macroalgae in the Firth of Clyde. In J. A. Allen, P. R. O. Barnett, J. M. Boyd, R. C. Kirkwood & J. C. Smyth (eds.), The Environment of the Estuary and Firth of Clyde. Proc. Roy. Soc. Edinb. 90B: 225–269.

  • Odum, E. P. & A. E. Smalley, 1959. Comparison of population energy flow of a herbivorous and deposit-feeding invertebrate in a salt marsh ecosystem. Proc. natn. Acad. Sci. U.S.A. 45: 617–622.

    Google Scholar 

  • Petpiroon, S. & E. Morgan, 1983. Observations on the tidal activity rhythm of the periwinkle Littorina nigrolineata (Gray). Mar. Behav. & Physiol. 9: 171–192.

    Google Scholar 

  • Petraitis, P. S., 1982. Occurrence of random and directional movements in the periwinkle Littorina littorea (L.). J. exp. mar. Biol. Ecol. 59: 207–217.

    Google Scholar 

  • Petraitis, P. S., 1983. Grazing patterns of the periwinkle and their effect on sessile intertidal organisms. Ecology 64: 522–533.

    Google Scholar 

  • Petraitis, P. S., 1987. Factors affecting rocky intertidal shores of New England: Herbivory and predation in sheltered bays. J. exp. mar. Biol. Ecol. 109: 117–136.

    Google Scholar 

  • Petraitis, P. S. & L. Sayigh, 1987. In situ measurement of radula movements of three species of Littorina (Gastropoda; Littorinidae). Veliger 30.

  • Raffaelli, D. G., 1985. Functional feeding groups of some intertidal molluscs defined by gut contents analysis. J. moll. Stud. 51: 233–239.

    Google Scholar 

  • Raffaelli, D. G. & R. N. Hughes, 1978. The effect of crevice size and availability on populations of Littorina rudis and Littorina neritoides. J. anim. Ecol. 47: 71–83.

    Google Scholar 

  • Ragan, M. A. & K. W. Glombitza, 1986. Phlorotannins, brown alga polyphenols. Progress in Phycol. Res. 4: 129–241.

    Google Scholar 

  • Reimchem, T. E., 1974. Studies on the biology and colour polymorphism of two sibling species of marine gastropod (Littorina). Ph.D. thesis, University of Liverpool. 389 pp.

  • Robertson, A. I. & K. H. Mann, 1982. Population dynamics and life history adaptations of Littorina neglecta Bean in an eelgrass meadow (Zostera marina L.) in Nova Scotia. J. exp. mar. Biol. Ecol. 63: 151–171.

    Google Scholar 

  • Sacchi, C. F., A. O. Ambrogi & D. Voltolini, 1981. Recherches sur le spectre trophique compare de Littorina saxatilis (Olivi) et de L. nigrolineata (Gray) (Gastropoda, Prosobranchia) sur le greve de Roscof. Cah. Biol. mar. 22: 83–88.

    Google Scholar 

  • Santelices, B. & R. Ugarte, 1987. Algal life-history strategies and resistance to digestion. Mar. Ecol. Prog. Ser. 35: 267–275.

    Google Scholar 

  • Sieburth, J. McN. & A. Jensen, 1968. Studies on algal substances in the sea. I. Gelbstoff (humic material) in terrestrial and marine waters. J. exp. mar. biol. Ecol. 2: 174–189.

    Google Scholar 

  • Sieburth, J. McN. & J. L. Tootle, 1981. Seasonality of microbial fouling on Ascophyllum nodosum (L.) Le Jol., Fucus vesiculosus L., Polysiphonia lanosa (L.) Tandy and Chondrus crispus Stackh. J. Phycol. 17: 57–64.

    Google Scholar 

  • Steneck, R. S. & L. Watling, 1982. Feeding capabilities and limitations of herbivorous molluscs: a functional group approach. Mar. Biol. 68: 299–319.

    Google Scholar 

  • Stephenson, T. A. & A. Stephenson, 1949. The universal features of zonation between tidemarks on rocky coasts. J. Ecol. 37: 289–305.

    Google Scholar 

  • Schonbeck, M. W. & T. A. Norton, 1980. Factors controlling the lower limits of fucoid algae on the shore. J. exp. mar. Biol. Ecol. 43: 131–150.

    Google Scholar 

  • Tempel, A. S., 1973. Tannin measuring techniques: A review. J. chem. Ecol. 8: 1289–1298.

    Google Scholar 

  • Thamdrup, H. M., 1935. Beitrage zur Okologie der Wattenfauna. Meddr. Kommn. Havunders, Serie. Fiskeri 10: 1–125.

    Google Scholar 

  • Thomas, J. D., 1986. The chemical ecology of Biomphalaria glabrata (Say): Sugars as attractants and arrestants. Comp. Biochem. Physiol. 83: 457–460.

    Google Scholar 

  • Thomas, J. D., J. Osfosu-Barko & R. L. Patience, 1983. Behavioural responses to carboxylic and amino acids by Biomphalaria glabrata (Say), the snail host of Schistosoma mansoni (Sambon), and other freshwater molluscs. Comp. Biochem. Physiol. 75: 57–76.

    Google Scholar 

  • Thomas, J. D., P. R. Sterry, H. Jones, M. Gubala & B. M. Grealy, 1986. The chemical ecology of Biomphalaria glabrata (Say): Sugars as phagostimulants. Comp. Biochem. Physiol. 83a: 461–475.

    Google Scholar 

  • Thomas, M. L. H. & F. H. Page, 1983. Grazing by the gastropod Lacuna vincta in the lower intertidal area of Musquash Head, New Brunswick, Canada. J. mar. biol. Ass. U.K. 63: 725–736.

    Google Scholar 

  • Townsend, C. R. & R. N. Hughes, 1981. Maximising net energy returns from foraging. In C. R. Townsend & P. Calow (eds), Physiological Ecology: an Evolutionary Approach to Resource Use. Blackwell Scientific Publs. Oxford. 86–108.

    Google Scholar 

  • Uhazy, L. S., R. D. Tanaka & A. J. MacInnis, 1978. Schistosoma mansoni: identification of chemicals that attract or trap its snail vector Biomphalaria glabrata. Science 201: 924–926.

    Google Scholar 

  • Underwood, A. J., 1979. The ecology of intertidal gastropods. Adv. Mar. Biol., 16: 111–210.

    Google Scholar 

  • Underwood, A. J. & K. E. McFadyen, 1981. Ecology of the intertidal snail Littorina acutispira Smith. J. exp. mar. biol. Ecol. 66: 169–197.

    Google Scholar 

  • Underwood, A. J. & M. G. Chapman, 1985. Multifactorial analyses of directions of movement of animals. J. exp. mar. Biol. Ecol. 91: 17–43.

    Google Scholar 

  • Van Alstyne, K. L., 1988. Herbivore grazing increases polyphenolic defenses in the intertidal brown alga Fucus distichus. Ecology. 69: 655–663.

    Google Scholar 

  • Van Dongen, A., 1956. The preference of Littorina obtusata for Fucaceae. Archs. néerl. zool. 11: 373–386.

    Google Scholar 

  • Warren, J. H., 1985. Climbing as an avoidance behaviour in the salt marsh periwinkle Littorina irrorata (Say). J. exp. mar. Biol. Ecol. 89: 11–28.

    Google Scholar 

  • Watson, D. C., 1983. Seaweed palatability and selective grazing by littoral gastropods. Ph.D. Thesis, University of Glasgow. 187 pp.

  • Watson, D. C, & T. A. Norton, 1985a. Dietary preferences of the common periwinkle Littorina littorea. J. exp. mar. Biol. Ecol. 88: 193–211.

    Google Scholar 

  • Watson, D. C. & T. A. Norton, 1985b. The physical characteristics of seaweed thalli as deterrents to littorine grazers. Bot. mar. 28: 383–387.

    Google Scholar 

  • Watson, D. C. & T. A. Norton, 1987. The habitat and feeding preferences of Littorina obtusata (L.) and Littorina mariae Sacchi et Rastelli. J. exp. mar. Biol. Ecol. 112: 61–72.

    Google Scholar 

  • Williams, G. A., 1987. Niche partitioning in Littorina obtusata and Littorina mariae. Ph.D. thesis, University of Bristol.

  • Wright, J. R. & R. G. Hartnoll, 1981. An energy budget for a population of the limpet Patella vulgata. J. mar. biol. Ass. U.K. 61: 627–646.

    Google Scholar 

  • Wright, J. R., 1977. The construction of energy budgets for three intertidal gastropods, Patella vulgata, Littorina littoralis and Nucella lapillus. Ph.D. thesis, University of Liverpool.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Norton, T.A., Hawkins, S.J., Manley, N.L. et al. Scraping a living: a review of littorinid grazing. Hydrobiologia 193, 117–138 (1990). https://doi.org/10.1007/BF00028071

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00028071

Key words

Navigation