Skip to main content

The Likelihood of Halophilic Life in the Universe

  • Chapter
  • First Online:
Life on Earth and other Planetary Bodies

Abstract

The search for extraterrestrial life has been declared as a goal for the twenty-first century by several space agencies (Foing, 2002). Potential candidates are microorganisms on or in the surfaces of moons and planets. Extremely halophilic archaea (haloarchaea) are of astrobiological interest since viable strains have been isolated from million-year-old deposits of halite (McGenity et al., 2000; Stan-Lotter et al., 1999, 2002; Fendrihan et al., 2006), suggesting the possibility of long-term survival under desiccation. Extraterrestrial halite has been identified, for example, in Martian meteorites (Treiman et al., 2000), in chloride-containing surface pools on Mars (Osterloo et al., 2008), and in the presumed salty ocean beneath the ice cover of Jupiter’s moon Europa (McCord et al., 1998). These discoveries make a consideration of the potential habitats for halophilic life in space intriguing. Recent data on the physical occurrence of liquid saline water on Mars (Smith et al., 2009; Renno et al., 2009) have added another novel aspect to this notion, since such “cryobrines” would provide liquid phases on the Martian surface, allowing perhaps metabolic activity of halophilic microorganisms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Angenendt P (2005) Progress in protein and antibody microarray technology. Drug Discov Today 10:503–511

    Article  Google Scholar 

  • Barber DJ (1981) Matrix phyllosilicates and associated minerals in C2M carbonaceous chondrites. Geochim Cosmochim Acta 45:945–970

    Article  ADS  Google Scholar 

  • Bridges JC, Grady MM (2000) Evaporite mineral assemblages in the nakhlite (Martian) meteorites. Earth Planet Sci Lett 176:267–279

    Article  ADS  Google Scholar 

  • Brock TD (1986) Introduction: an overview of the thermophiles. In: Brock TD (ed) Thermophiles. General, molecular and applied microbiology. Wiley, New York, pp 1–16

    Google Scholar 

  • Cayol JL, Ollivier B, Patel BK, Prensier G, Garcia JL (1994) Isolation and characterization of Halothermothrix oreniigen. nov., sp. nov., a halophilic, thermophilic, fermentative, strictly anaerobic bacterium. Int J Syst Bacteriol 44:534–540

    Article  Google Scholar 

  • Cayol JL, Ducerf S, Patel BKC, Garcia J-L, Thomas P, Ollivier B (2000) Thermohalobacter berrensisgen. nov., sp. nov., a thermophilic, strictly halophilic bacterium from a solar saltern. Int J Syst Evol Microbiol 50:559–564

    Article  Google Scholar 

  • Christensen PR, Anderson DL, Chase SC, Clancy RT, Clark RN, Conrath BJ, Kieffer HH, Kuzmin RO, Malin MC, Pearl JC, Roush TL, Smith MD (1998) Results from the mars global surveyor thermal emission spectrometer. Science 279:1692–1698

    Article  ADS  Google Scholar 

  • Denner EBM, McGenity TJ, Busse H-J, Wanner G, Grant WD, Stan-Lotter H (1994) Halococcus salifodinaesp.nov., an Archaeal isolate from an Austrian salt mine. Int J Syst Bacteriol 44:774–780

    Article  Google Scholar 

  • Downs RT (2006) The RRUFF Project: an integrated study of the chemistry, crystallography, Raman and infrared spectroscopy of minerals. Program and abstracts of the 19th general meeting of the International Mineralogical Association in Kobe, Japan, p 03, http://rruff.geo.arizona.edu/rruff/

  • Ellery A, Wynn-Williams DD (2003) Methodologies and techniques for detecting extraterrestrial (microbial) life: Why Raman spectroscopy on Mars?— a case of the right tool for the right job. Astrobiology 3:565–579

    Article  ADS  Google Scholar 

  • Fendrihan S, Legat A, Gruber C, Pfaffenhuemer M, Weidler G, Gerbl F, Stan-Lotter H (2006) Extremely halophilic archaea and the issue of long term microbial survival. Rev Environ Sci Biotech 5:1569–1605

    Google Scholar 

  • Fendrihan S, Bérces A, Lammer H, Musso M, Rontó G, Polacsek TK, Holzinger A, Kolb C, Stan-Lotter H (2009a) Investigating the effects of simulated Martian UV radiation on Halococcus dombrowskiiand other extremely halophilic archaebacteria. Astrobiology 9:104–112

    Article  ADS  Google Scholar 

  • Fendrihan S, Musso M, Stan-Lotter H (2009b) Raman spectroscopy of extremely halophilic Archaea embedded in halite as a potential method for their detection in terrestrial and possibly extraterrestrial samples. J Raman Spectrosco 40:1996–2003

    Article  ADS  Google Scholar 

  • Fernández-Calvo P, Näke C, Rivas LA, García-Villadangos M, Gómez-Elvira J, Parro V (2006) A multi-array competitive immunoassay for the detection of broad range molecular size organic compounds relevant for astrobiology. Planet Space Sci 54:1612–1621

    Article  ADS  Google Scholar 

  • Fish SA, Shepherd TJ, McGenity TJ, Grant WD (2002) Recovery of 16S ribosomal RNA gene fragments from ancient halite. Nature 417:432–436

    Article  ADS  Google Scholar 

  • Foing B (2002) Space activities in exo/astrobiology. In: Horneck G, Baumstark-Khan C (eds) Astrobiology. The quest for the conditions of life. Springer, Berlin/Heidelberg/New York, pp 389–398

    Google Scholar 

  • Gilichinsky D, Rivkina E, Bakermans C, Shcherbakova V, Petrovskaya L, Ozerskaya S, Ivanushkina N, Kochkin G, Laurinavichuis K, Pecheritsina S, Fattakhova R, Tiedje JM (2005) Biodiversity of cryopegs in permafrost. FEMS Microbiol Ecol 53:117–128

    Article  Google Scholar 

  • Goh F, Leuko S, Allen MA, Bowman JP, Kamekura M, Neilan BA, Burns BP (2006) Halococcus hamelinensissp. nov., a novel halophilic archaeon isolated from stromatolites in Shark Bay. Aust Int J Syst Evol Microbiol 56:1323–1329

    Article  Google Scholar 

  • Gooding JL (1992) Soil mineralogy and chemistry on Mars: possible clues from salts and clays in SNC meteorites. Icarus 99:28–41

    Article  ADS  Google Scholar 

  • Grant WD, Gemmell RT, McGenity TJ (1998) Halobacteria: the evidence for longevity. Extremophiles 2:279–287

    Article  Google Scholar 

  • Grant WD, Kamekura M, McGenity TJ, Ventosa A (2001) Class III. Halobacteria class. nov. In: Boone DR, Castenholz RW, Garrity GM (eds) Bergey´s manual of systematic bacteriology, vol I, 2nd edn. Springer, New York, pp 294–301

    Google Scholar 

  • Gruber C, Legat A, Pfaffenhuemer M, Radax C, Weidler G, Busse H-J, Stan-Lotter H (2004) Halobacterium noricensesp. nov., an archaeal isolate from a bore core of an alpine Permo-Triassic salt deposit, classification of Halobacteriumsp. NRC-1 as a strain of Halobacterium salinarumand emended description of Halobacterium salinarum. Extremophiles 8:431–439

    Article  Google Scholar 

  • Javor BJ (1989) Hypersaline environments: microbiology and biogeochemistry. Springer, Berlin/Heidelberg/New York

    Google Scholar 

  • Jorge Villar SE, Edwards HGM (2006) Raman spectroscopy in astrobiology. Anal Bioanal Chem 384:100–113

    Article  Google Scholar 

  • Leuko S, Legat A, Fendrihan S, Stan-Lotter H (2004) Evaluation of the LIVE/DEAD BacLight kit for extremophilic archaea and environmental hypersaline samples. Appl Environ Microbiol 70:6884–6886

    Article  Google Scholar 

  • Leuko S, Rothschild LJ, Burns BP (2010) Halophilic Archaea and the search for extinct and extant life on Mars. J Cosmol 5:940–950

    Google Scholar 

  • Mancinelli RL, White MR, Rothschild LJ (1998) Biopan survival I: exposure of the osmophile Synechococcussp. (Nägeli) and Haloarculasp. to the space environment. Adv. Space Res 22:327–334

    Article  ADS  Google Scholar 

  • Mancinelli R, Landheim R, Sánchez-Porro C, Dornmayr-Pfaffenhuemer M, Gruber C, Legat A, Ventosa A, Radax C, Ihara K, White MR, Stan-Lotter H (2009) Halorubrum chaoviator, sp. nov., a haloarchaeon isolated from sea salt in Baja California, Mexico, Western Australia and Naxos, Greece. Int J Syst Evol Microbiol 59:1908–1913

    Article  Google Scholar 

  • Marion GM, Fritsen CH, Eicken H, Payne MC (2003) The search for life on Europa: limiting environmental factors, potential habitats, and Earth analogues. Astrobiology 3:785–811

    Article  ADS  Google Scholar 

  • Marshall CP, Carter EA, Leuko S, Javaux EJ (2006) Vibrational spectroscopy of extant and fossil microbes: relevance for the astrobiological exploration of Mars. Vib Spectrosc 41:182–189

    Article  Google Scholar 

  • McCord TB, Mansen GB, Fanale FP, Carlson RW, Matson DL, Johnson TV, Smythe WD, Crowley JK, Martin PD, Ocampo A, Hibbitts CA, Granahan JC (1998) Salts on Europa´s surface detected by Galileo´s near infrared mapping spectrometer. The NIMS team. Science 280:1242–1245

    Article  ADS  Google Scholar 

  • McGenity TJ, Gemmell RT, Grant WD, Stan-Lotter H (2000) Origins of halophilic micro-organisms in ancient salt deposits (MiniReview). Environ Microbiol 2:243–250

    Article  Google Scholar 

  • McKay DS, Gibson EK, Thomas-Keptra KL, Vali H, Romanek CS, Clemett SJ, Chillier XDF, Maechling CR, Zare RN (1996) Search for past life on Mars: possible relic biogenic activity in Martian meteorite ALH84001. Science 273:924–926

    Article  ADS  Google Scholar 

  • Minegishi H, Mizuki T, Echigo A, Fukushima T, Kamekura M, Usami R (2008) Acidophilic haloarchaeal strains are isolated from various solar salts. Saline Syst 4:16. doi:10.1186/1746-1448-4-16

    Article  Google Scholar 

  • Mormile MR, Biesen MA, Gutierrez MC, Ventosa A, Pavlovich JB, Onstott TC, Fredrickson JK (2003) Isolation of Halobacterium salinarumretrieved directly from halite brine inclusions. Environ Microbiol 5:1094–1102

    Article  Google Scholar 

  • Mormile MR, Hong B-Y, Benison KC (2009) Molecular analysis of the microbial communities of Mars analog lakes in Western Australia. Astrobiology 9:919–930

    Article  ADS  Google Scholar 

  • Nadeau JL, Perreault NN, Niederberger TD, Whyte LG, Sun HJ, Leon R (2008) Fluorescence microscopy as a tool for in situlife detection. Astrobiology 8:859–874

    Article  ADS  Google Scholar 

  • Nisbet EG, Sleep NH (2001) The habitat and nature of early life. Nature 409:1083–1091

    Article  ADS  Google Scholar 

  • Norton CF, McGenity TJ, Grant WD (1993) Archaeal halophiles (halobacteria) from two British salt mines. J Gen Microbiol 139:1077–1081

    Google Scholar 

  • Oren A (2002) Miscellaneous habitats of halophilic microorganisms - from antarctic lakes to hydrothermal vents. Chapter 17. In: Oren A (ed) Halophilic microorganisms and their environments. Kluwer, Dordrecht, pp 517–538

    Chapter  Google Scholar 

  • Osterloo MM, Hamilton VE, Bandfield JL, Glotch TD, Baldridge AM, Christensen PR, Tornabene LL, Anderson FS (2008) Chloride-bearing materials in the southern highlands of Mars. Science 319:1651–1654

    Article  ADS  Google Scholar 

  • Park JS, Vreeland RH, Cho BC, Lowenstein TK, Timofeeff MN, Rosenzweig WD (2009) Haloarchaeal diversity in 23, 121 and 419 MYA salts. Geobiology 7:515–523

    Article  Google Scholar 

  • Parro V, Fernandez-Calvo P, Rodriguez-Manfredi JA, Moreno-Paz M, Rivas LA, Garcia-Villadangos M, Bonaccorsi R, González-Pastor JE, Prieto-Ballesteros O, Schuerger AC, Davidson M, Gómez-Elvira J, Stoker CR (2008a) SOLID2: an antibody array-based life- detector instrument in a Mars Drilling Simulation Experiment (MARTE). Astrobiology 8:987–999

    Article  ADS  Google Scholar 

  • Parro V, Rivas LA, Gómez-Elvira J (2008b) Protein microarrays-based strategies for life detection in astrobiology. Space Sci Rev 135:293–311

    Article  ADS  Google Scholar 

  • Patel MR, Bérces A, Kerékgyárto T, Rontó G, Lammer H, Zarnecki JC (2004) Annual solar UV exposure and biological effective dose rates on the martian surface. Adv Space Res 33:1247–1252

    Article  ADS  Google Scholar 

  • Postberg F, Kempf S, Schmidt J, Brilliantov N, Beinsen A, Abel B, Buck U, Srama R (2009) Sodium salts in E-ring ice grains from an ocean below the surface of Enceladus. Nature 459:1098–1101

    Article  ADS  Google Scholar 

  • Radax C, Gruber C, Stan-Lotter H (2001) Novel haloarchaeal 16S rRNA gene sequences from Alpine Permo-Triassic rock salt. Extremophiles 5:221–228

    Article  Google Scholar 

  • Renno NO, Bos BJ, Catling D, Clark BC, Drube L, Fisher D, Goetz W, Hviid SF, Keller H, Kok JF, Kounaves SP, Leer K, Lemmon M, Bo Madsen M, Markiewicz W, Marshall J, McKay C, Mehta M, Smith M, Zorzano MP, Smith PH, Stoker C, Young SMM (2009) Possible physical and thermodynamical evidence for liquid water on Mars. J Geophys Res 114:E00E03. doi:10.1029/2009JE003362

    Article  Google Scholar 

  • Rieder R, Gellert R, Anderson RC, Bruckner J, Clark BC, Dreibus G, Economou T, Klingelhöfer G, Lugmair GW, Ming DW, Squyres SW, d’Uston C, Wänke H, Yen A, Zipfel J (2004) Chemistry of rocks and soils at Meridiani Planum from the alpha particle X-ray spectrometer. Science 306:1746–1749

    Article  ADS  Google Scholar 

  • Rivas LA, Garcia-Villadangos M, Moreno-Paz M, Cruz-Gil P, Gomez-Elvira J, Parro V (2008) A 200-antibody microarray biochip for environmental monitoring. Searching for universal microbial bio-markers through immunoprofiling. Anal Chem 80:7970–7979

    Article  Google Scholar 

  • Rontó G, Bérces A, Lammer H, Cockell CS, Molina-Cuberos GJ, Patel MR, Selsis F (2003) Solar UV irradiation conditions on the surface of Mars. Photochem Photobiol 77:34–40

    Article  Google Scholar 

  • Schidlowski M (1988) A 3,800 million-year old record of life from carbon in sedimentary rocks. Nature 333:313–318

    Article  ADS  Google Scholar 

  • Schidlowski M (2001) Search for morphological and biochemical vestiges of fossil life in extraterrestrial settings: utility of terrestrial evidence. In: Horneck G, Baumstark-Khan C (eds) Astrobiology. The quest for the conditions of life. Springer, Berlin/Heidelberg/New York, pp 373–386

    Google Scholar 

  • Schubert BA, Lowenstein TK, Timofeeff MN (2009) Microscopic identification of prokaryotes in modern and ancient halite, Saline Valley and Death Valley, California. Astrobiology 9:467–482

    Article  ADS  Google Scholar 

  • Sims MR, Cullen DC, Bannister NP, Grant WD, Henry O, Jones R, McKnight D, Thompson DP, Wilson PK (2005) The specific molecular identification of life experiment (SMILE). Planet Space Sci 53:781–791

    Article  ADS  Google Scholar 

  • Skelley AM, Cleaves HJ, Jayarajah CN, Bada JL, Mathies RA (2006) Application of the Mars Organic Analyzer to nucleobase and amine biomarker detection. Astrobiology 6:824–837

    Article  ADS  Google Scholar 

  • Smith PH, Tamppari LK, Arvidson RE, Bass D, Blaney D, Boynton WV, Carswell A, Catling DC, Clark BC, Duck T, Dejong E, Fisher D, Goetz W, Gunnlaugsson HP, Hecht MH, Hipkin V, Hoffman J, Hviid SF, Keller HU, Kounaves SP, Lange CF, Lemmon MT, Madsen MB, Markiewicz WJ, Marshall J, McKay CP, Mellon MT, Ming DW, Morris RV, Pike WT, Renno N, Staufer U, Stoker C, Taylor P, Whiteway JA, Zent AP (2009) H2O at the Phoenix landing site. Science 325:58–61

    ADS  Google Scholar 

  • Stan-Lotter H, McGenity TJ, Legat A, Denner EBM, Glaser K, Stetter KO, Wanner G (1999) Very similar strains of Halococcus salifodinaeare found in geographically separated Permo-Triassic salt deposits. Microbiology 145:3565–3574

    Google Scholar 

  • Stan-Lotter H, Radax C, Gruber C, McGenity TJ, Legat A, Wanner G, Denner EBM (2000) The distribution of viable microorganisms in Permo-Triassic rock salt. In: Geertman RM (ed) SALT 2000. 8th world salt symposium, vol 2. Elsevier, Amsterdam, pp 921–926

    Google Scholar 

  • Stan-Lotter H, Pfaffenhuemer M, Legat A, Busse H-J, Radax C, Gruber C (2002) Halococcus dombrowskiisp. nov., an archaeal isolate from a Permo-Triassic alpine salt deposit. Int J Syst Evol Microbiol 52:1807–1814

    Article  Google Scholar 

  • Stan-Lotter H, Leuko S, Legat A, Fendrihan S (2006) The assessment of the viability of halophilic microorganisms in natural communities. In: Oren A, Rainey F (eds) Methods in microbiology, vol 35, Extremophiles. Elsevier, Oxford, pp 569–584

    Google Scholar 

  • Stetter KO (2002) Hyperthermophilic microorganisms. In: Horneck G, Baumstark-Khan C (eds) Astrobiology. The quest for the conditions of life. Springer, Berlin/New York, pp 169–184

    Google Scholar 

  • Thompson DP, Wilson PK, Sims MR, Cullen DC, Holt JMC, Parker DJ, Smith MD (2006) Preliminary investigation of proton and helium ion radiation effects on fluorescent dyes for use in astrobiology applications. Anal Chem 78:2738–2743

    Article  Google Scholar 

  • Treiman AH, Gleason JD, Bogard DD (2000) The SNC meteorites are from Mars. Planet Space Sci 48:1213–1230

    Article  ADS  Google Scholar 

  • Vago JL (2010) The ExoMars rover mission to search for signs of life. Abstr. 5318, Astrobiology science conference, 26–29 Apr 2010, League City, TX, USA

    Google Scholar 

  • Vago J, Kminek G (2007) Putting together an exobiology mission: the ExoMars example. In: Horneck G, Rettberg P (eds) Complete course in astrobiology. Wiley, Weinheim, pp 321–351

    Chapter  Google Scholar 

  • Vreeland RH, Piselli AF Jr, Mc-Donnough S, Meyers SS (1998) Distribution and diversity of halophilic bacteria in a subsurface salt formation. Extremophiles 2:321–331

    Article  Google Scholar 

  • Vreeland RH, Straight S, Krammes J, Dougherty K, Rosenzweig WD, Kamekura M (2002) Halosimplex carlsbadense gen. nov., sp. nov., a unique halophilic archaeon, with three 16S rRNA genes, that grows only in defined medium with glycerol and acetate or pyruvate. Extremophiles 6:445–452

    Article  Google Scholar 

  • Vreeland RH, Jones J, Monson A, Rosenzweig WD, Lowenstein TK, Timofeeff M, Satterfield C, Cho BC, Park JS, Wallace A, Grant WD (2007) Isolation of live Cretaceous (121–112 million years old) halophilic Archaea fromprimary salt crystals. Geomicrobiol J 24:275–282

    Article  Google Scholar 

  • Wang QF, Li W, Yang H, Liu YL, Cao HH, Dornmayr-Pfaffenhuemer M, Stan-Lotter H, Guo GQ (2007) Halococcus qingdaonensissp. nov., a halophilic archaeon isolated from a crude sea-salt sample. Int J Syst Evol Microbiol 57:600–604

    Article  Google Scholar 

  • Weigl A, Gruber C, Blanco-Lopez Y, Rivas LA, Parro V, Stan-Lotter H (2010) Using antibodies against ATPase and microarray immuno assays for the search for potential extraterrestrial life in saline environments on Mars. Abstr. EGU2010-3159, European Geoscience Union General Assembly, Vienna, 2–7 May 2010

    Google Scholar 

  • Westall F, de Ronde CEJ, Southam G, Grassineau N, Colas M, Cockell CS, Lammer H (2006) Implications of a 3.472–3.333 Gyr-old subaerial microbial mat from the Barberton Greenstone Belt, South Africa for the UV environmental conditions on the early Earth. Philos Trans Roy Soc Lond B, Biol Sci 361:1857–1875

    Google Scholar 

  • Wheeler DA (1985) An analysis of the aeolian dustfall on Eastern Britain, November 1984. Proc Yorkshire Geol Soc 45:307–309

    Article  ADS  Google Scholar 

  • Whitby J, Burgess R, Turner G, Gilmour J, Bridges J (2000) Extinct 129I halite from a primitive meteorite: evidence for evaporite formation in the early solar system. Science 288:1819–1821

    Article  ADS  Google Scholar 

  • Wierzchos J, Ascaso C, McKay CP (2006) Endolithic cyanobacteria in halite rocks from the hyperarid core of the Atacama desert. Astrobiology 6:415–422

    Article  ADS  Google Scholar 

  • Zolensky ME, Bodnar RJ, Gibson EK, Nyquist LE, Reese Y, Shih CY, Wiesman H (1999) Asteroidal water within fluid inclusion-bearing halite in an H5 chondrite, Monahans (1998). Science 285:1377–1379

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Austrian Science Foundation (FWF) projects P16260-B07 and P18256-B06 and by the Austrian Research Promotion Agency (FFG) project HALOSPACE. We thank C. Gruber for expert technical assistance and M. Mayr and Salinen Austria for help in obtaining rock salt samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Helga Stan-Lotter .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Stan-Lotter, H. et al. (2012). The Likelihood of Halophilic Life in the Universe. In: Hanslmeier, A., Kempe, S., Seckbach, J. (eds) Life on Earth and other Planetary Bodies. Cellular Origin, Life in Extreme Habitats and Astrobiology, vol 24. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4966-5_20

Download citation

Publish with us

Policies and ethics