Skip to main content

Preferential Assembly of G-αβγ Complexes Directed by the γ Subunits

  • Chapter
  • First Online:
GPCR Signalling Complexes – Synthesis, Assembly, Trafficking and Specificity

Part of the book series: Subcellular Biochemistry ((SCBI,volume 63))

  • 2374 Accesses

Abstract

Assembly of the G-αβγ heterotrimer is required for receptor signaling. Although much has been learned about the assembly process itself, the identities of the G-αβγ combinations that actually exist in physiological setting are largely unknown. Moreover, there is uncertainty regarding whether the individual subunits associate by a random process, or combine by a regulated process to form quasi-stable G-αβγ complexes. In this chapter, we will focus on emerging genetic ­evidence that supports the latter model. Specifically, we will discuss how use of gene targeted mice has revealed preferential assembly of the striatal-specific Gαolfβ2γ7 complex occurs by a sequential process that is directed by the γ7 subunit. The existence of specific G-αβγ complexes responsible for transducing the signals from different receptors may have profound implications by providing a possible explanation for biased agonism.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Andresen BT (2011) A pharmacological primer of biased agonism. Endocr Metab Immune Disord Drug Targets 11(2):92–98

    PubMed  CAS  Google Scholar 

  • Balcueva EA, Wang Q, Hughes H, Kunsch C, Yu Z, Balcueva RJD (2000) Human G protein γ11 and γ14 subtypes define a new functional subclass. Exp Cell Res 257(2):310–319

    Article  PubMed  CAS  Google Scholar 

  • Blichenberg A, Rehbein M, Müller R, Garner CC, Richter D, Kindler S (2001) Identification of a cis-acting dendritic targeting element in the mRNA encoding the alpha subunit of Ca2+/­calmodulin-dependent protein kinase II. Eur J Neurosci 13(10):1881–1888

    Article  PubMed  CAS  Google Scholar 

  • Bunemann M, Frank M, Lohse MJ (2003) Gi protein activation in intact cells involves subunit rearrangement rather than dissociation. Proc Natl Acad Sci USA 100:16077–16082

    Article  PubMed  Google Scholar 

  • Cook LA, Schey KL, Cleator JH, Wilcox MD, Dingus J, Hildebrandt JD (2001) Identification of a region in G protein gamma subunits conserved across species but hypervariable among subunit isoforms. Protein Sci 10(12):2548–2555

    Article  PubMed  CAS  Google Scholar 

  • Cook LA, Schey KL, Wilcox MD, Dingus J, Ettling R, Nelson T, Knapp DR, Hildebrandt JD (2006) Proteomic analysis of bovine brain G protein gamma subunit processing heterogeneity. Mol Cell Proteomics 5(4):671–685

    PubMed  CAS  Google Scholar 

  • Corvol JC, Muriel MP, Valjent E, Féger J, Hanoun N, Girault JA, Hirsch EC, Hervé D (2004) Persistent increase in olfactory type G-protein α subunit levels may underlie D1 receptor functional hypersensitivity in Parkinson disease. J Neurosci 24(31):7007–7014

    Article  PubMed  CAS  Google Scholar 

  • Dietrich A, Scheer A, Illenberger D, Kloog Y, Henis YI, Gierschik P (2003) Studies on G-protein αβγ heterotrimer formation reveal a putative S-prenyl-binding site in the α subunit. Biochem J 376(Pt 2):449–456

    Article  PubMed  CAS  Google Scholar 

  • Doyle JP, Dougherty JD, Heiman M, Schmidt EF, Stevens TR, Ma G, Bupp S, Shrestha P, Shah RD, Doughty ML, Gong S, Greengard P, Heintz N (2008) Application of a translational profiling approach for the comparative analysis of CNS cell types. Cell 135(4):749–762, Doyle

    Article  PubMed  CAS  Google Scholar 

  • Dupré DJ, Robitaille M, Richer M, Ethier N, Mamarbachi AM, Hébert TE (2007) Dopamine receptor-interacting protein 78 acts as a molecular chaperone for G-γ subunits before assembly with G-β. J Biol Chem 282(18):13703–13715

    Article  PubMed  Google Scholar 

  • Dupré DJ, Robitaille M, Rebois RV, Hébert TE (2009) The role of G-βγ subunits in the organization, assembly, and function of GPCR signaling complexes. Annu Rev Pharmacol Toxicol 49:31–56

    Article  PubMed  Google Scholar 

  • Evanko DS, Thiyagarajan MM, Wedegaertner PB (2000) Interaction with Gbetagamma is required for membrane targeting and palmitoylation of Galpha(s) and Galpha(q). J Biol Chem 275:1327–1336

    Article  PubMed  CAS  Google Scholar 

  • Evanko DS, Thiyagarajan MM, Siderovski DP, Wedegaertner PB (2001) Gbeta gamma isoforms selectively rescue plasma membrane localization and palmitoylation of mutant Galphas and Galphaq. J Biol Chem 276:23945–23953

    Article  PubMed  CAS  Google Scholar 

  • Fishburn CS, Herzmark P, Morales J, Bourne HR (1999) Gbetagamma and palmitate target newly synthesized Galphaz to the plasma membrane. J Biol Chem 274:18793–18800

    Article  PubMed  CAS  Google Scholar 

  • Fredriksson R, Lagerstrom MC, Lundin LG, Schioth HB (2003) The G-protein-coupled receptors in the human genome form five main families. Phylogenetic analysis, paralogon groups, and fingerprints. Mol Pharmacol 63(6):1256–1272

    Article  PubMed  CAS  Google Scholar 

  • Fung BKK, Nash CR (1983) Characterization of transducin from bovine retinal rod outer segments. II. Evidence for district binding sites and conformational changes revealed by limited proteolysis with trysin. J Biol Chem 258(17):10503–10510

    Google Scholar 

  • Gabay M, Pinter ME, Wright FA, Chan P, Murphy AJ, Valenzuela DM, Yancopoulos GD, Tall GG (2011) Ric-8 proteins are molecular chaperones that direct nascent G protein α subunit ­membrane association. Sci Signal 4(200):ra79

    Article  PubMed  CAS  Google Scholar 

  • Gilman AG (1987) G proteins: transducers of receptor-generated signals. Annu Rev Biochem 56:615–649

    Article  PubMed  CAS  Google Scholar 

  • Higgins JB, Casey PJ (1996) The role of prenylation in G-protein assembly and function. Cell Signal 8(6):433–437

    Article  PubMed  CAS  Google Scholar 

  • Hildebrandt JD (1997) Role of subunit diversity in signaling by heterotrimeric G proteins. Biochem Pharmacol 54:325–339

    Article  PubMed  CAS  Google Scholar 

  • Howlett AC, Gray AJ, Hunter JM, Willardson BM (2009) Role of molecular chaperones in G protein β5/regulator of G protein signaling dimer assembly and G protein βγ dimer specificity. J Biol Chem 284(24):16386–16399

    Article  PubMed  CAS  Google Scholar 

  • Huang L, Shanker YG, Dubauskaite J, Zheng JZ, Yan W, Rosenzweig S, Spielman AI, Max M, Margolskee RF (1999) G- γ13 colocalizes with gustducin in taste receptor cells and mediates IP3 responses to bitter denatonium. Nat Neurosci 2(12):1055–1062

    Article  PubMed  CAS  Google Scholar 

  • Hurowitz EH, Melnyk JM, Chen YJ, Kouros-Mehr H, Simon MI, Shizuya H (2000) Genomic characterization of the human heterotrimeric G protein α, β, and γ subunit genes. DNA Res 7(2):111–120

    Article  PubMed  CAS  Google Scholar 

  • Jeong SW, Ikeda SR (2000) Effect of G protein heterotrimer composition on coupling of ­neurotransmitter receptors to N-type Ca(2+) channel modulation in sympathetic neurons. Proc Natl Acad Sci USA 97(2):907–912

    Article  PubMed  CAS  Google Scholar 

  • Kerr DS, Von Dannecker LE, Davalos M, Michaloski JS, Malnic B (2008) Ric-8B interacts with G αolf and G γ13 and co-localizes with G αolf, G β1, and G γ13 in the cilia of olfactory sensory neurons. Mol Cell Neurosci 38(3):341–348

    Article  PubMed  CAS  Google Scholar 

  • Kleuss C, Scherübl H, Hescheler J, Schultz G, Wittig B (1993) Selectivity in signal transduction determined by γ subunits of heterotrimeric G proteins. Science 259(5096):832–834

    Article  PubMed  CAS  Google Scholar 

  • Lagerström MC, Schiöth HB (2008) Structural diversity of G protein-coupled receptors and significance for drug discovery. Nat Rev Drug Discov 7(4):339–357

    Article  PubMed  Google Scholar 

  • Lambert NA (2008) Dissociation of heterotrimeric γ proteins in cells. Sci Signal 1(25)

    Google Scholar 

  • Lobanova ES, Finkelstein S, Herrmann R, Chen YM, Kessler C, Michaud NA, Trieu LH, Strissel KJ, Burns ME, Arshavsky VY (2008) Transducin γ-subunit sets expression levels of α- and β-subunits and is crucial for rod viability. J Neurosci 28(13):3510–3520

    Article  PubMed  CAS  Google Scholar 

  • Marin EP, Neubig RR (1995) Lack of association of G-protein β2- and γ2-subunit N- terminal fragments provides evidence against the coiled-coil model of subunit-βγ assembly. Biochem J 309:377–380

    PubMed  CAS  Google Scholar 

  • Marrari Y, Crouthamel M, Irannejad R, Wedegaertner PB (2007) Assembly and trafficking of heterotrimeric G proteins. Biochemistry 46(26):7665–7677

    Article  PubMed  CAS  Google Scholar 

  • Morales J, Fishburn CS, Wilson PT, Bourne HR (1998) Plasma membrane localization of G αz requires two signals. Mol Biol Cell 9(1):1–14

    PubMed  CAS  Google Scholar 

  • Nagai Y, Nishimura A, Tago K, Mizuno N, Itoh H (2010) Ric-8B stabilizes the α subunit of stimulatory G protein by inhibiting its ubiquitination. J Biol Chem 285(15):11114–11120

    Article  PubMed  CAS  Google Scholar 

  • Neubig RR (1994) Membrane organization in G-protein mechanisms. FASEB J 8(12):939–946

    PubMed  CAS  Google Scholar 

  • Obin M, Lee BY, Meinke G, Bohm A, Lee RH, Gaudet R, Hopp JA, Arshavsky VY, Willardson BM, Taylor A (2002) Ubiquitylation of the transducin βγ subunit complex. Regulation by phosducin. J Biol Chem 277(46):44566–44575

    Article  PubMed  CAS  Google Scholar 

  • Peng YW, Robishaw JD, Levine MA, Yau KW (1992) Retinal rods and cones have distinct G protein β and γ subunits. Proc Natl Acad Sci USA 89(22):10882–10886

    Article  PubMed  CAS  Google Scholar 

  • Rajput PS, Kharmate G, Somvanshi RK, Kumar U (2009) Colocalization of dopamine receptor subtypes with dopamine and cAMP-regulated phosphoprotein (DARPP-32) in rat brain. Neurosci Res 65(1):53–63

    Article  PubMed  CAS  Google Scholar 

  • Rebois RV, Warner DR, Basi NS (1997) Does subunit dissociation necessarily accompany the activation of all heterotrimeric G proteins. Cell Signal 9:141–151

    Article  PubMed  CAS  Google Scholar 

  • Rehm A, Ploegh HL (1997) Assembly and intracellular targeting of the betagamma subunits of heterotrimeric G proteins. J Cell Biol 137(2):305–317

    Article  PubMed  CAS  Google Scholar 

  • Richardson M, Robishaw JD (1999) The α2A-adrenergic receptor discriminates between Gi ­heterotrimers of different βγ subunit composition in Sf9 insect cell membranes. J Biol Chem 274(19):13525–13533

    Article  PubMed  CAS  Google Scholar 

  • Robishaw JD (2009) Specificity of G protein βγ signaling. In: Bradshaw RA, Dennis EA (eds) Handbook of cell signaling. Academic, San Diego

    Google Scholar 

  • Robishaw JD, Berlot CH (2004) Translating G protein subunit diversity into functional specificity. Curr Opin Cell Biol 16(2):206–209

    Article  PubMed  CAS  Google Scholar 

  • Schwindinger WF, Betz KS, Giger KE, Sabol A, Bronson SK, Robishaw JD (2003) Loss of G protein γ7 alters behavior and reduces striatal αolf level and cAMP production. J Biol Chem 278(8):6575–6579

    Article  PubMed  CAS  Google Scholar 

  • Schwindinger WF, Giger KE, Betz KS, Stauffer AM, Sunderlin EM, Sim-Selley LJ, Selley DE, Bronson SK, Robishaw JD (2004) Mice with deficiency of G protein γ3 are lean and have ­seizures. Mol Cell Biol 24(17):7758–7768

    Article  PubMed  CAS  Google Scholar 

  • Schwindinger WF, Borrell BM, Waldman LC, Robishaw JD (2009) Mice lacking the G protein γ3 subunit show resistance to opioids and diet induced obesity. Am J Physiol Regul Integr Comp Physiol 297(5):R1494–R1502

    Article  PubMed  CAS  Google Scholar 

  • Schwindinger WF, Mihalcik LJ, Giger KE, Betz KS, Stauffer AM, Linden J, Herve D, Robishaw JD (2010) Adenosine A2A receptor signaling and Golf assembly show a specific requirement for the γ7 subtype in the striatum. J Biol Chem 285(39):29787–29796

    Article  PubMed  CAS  Google Scholar 

  • Sondek J, Bohm A, Lambright DG, Hamm HE, Sigler PB (1996) Crystal structure of a G-protein βγ dimer at 2.1A resolution. Nature 379:369–374

    Article  PubMed  CAS  Google Scholar 

  • Sternweis PC (1986) The purified alpha subunits of Go and Gi from bovine brain require βγ for association with phospholipid vesicles. J Biol Chem 261(2):631–637

    PubMed  CAS  Google Scholar 

  • Vaidehi N, Kenakin T (2010) The role of conformational ensembles of seven transmembrane receptors in functional selectivity. Curr Opin Pharmacol 10(6):775–781

    Article  PubMed  CAS  Google Scholar 

  • Wall MA, Coleman DE, Lee E, Iniguez-Lluhi JA, Posner BA, Gilman AG, Sprang SR (1995) The structure of the G protein heterotrimer Gi alpha 1 beta 1 gamma 2. Cell 83:1047–1058

    Article  PubMed  CAS  Google Scholar 

  • Wang Q, Mullah B, Hansen C, Asundi J, Robishaw JD (1997) Ribozyme-mediated suppression of the G protein γ7 subunit suggests a role in hormone regulation of adenylylcyclase activity. J Biol Chem 272(41):26040–26048

    Article  PubMed  CAS  Google Scholar 

  • Wang Q, Mullah BK, Robishaw JD (1999) Ribozyme approach identifies a functional association between the G protein β1γ7 subunits in the beta-adrenergic receptor signaling pathway. J Biol Chem 274(24):17365–17371

    Article  PubMed  CAS  Google Scholar 

  • Wedegaertner PB (1998) Lipid modifications and membrane targeting of G α. Biol Signals Recept 7:125–135

    Article  PubMed  CAS  Google Scholar 

  • Wells CA, Dingus J, Hildebrandt JD (2006) Role of the chaperonin CCT/TRiC complex in G ­protein βγ-dimer assembly. J Biol Chem 281(29):20221–20232

    Article  PubMed  CAS  Google Scholar 

  • Wilcox MD, Dingus J, Balcueva EA, McIntire WE, Mehta ND, Schey KL, Robishaw JD, Hildebrandt JD (1995) Bovine brain GO isoforms have distinct gamma subunit compositions. J Biol Chem 270(9):4189–4192

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Janet D. Robishaw Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Robishaw, J.D. (2012). Preferential Assembly of G-αβγ Complexes Directed by the γ Subunits. In: Dupré, D., Hébert, T., Jockers, R. (eds) GPCR Signalling Complexes – Synthesis, Assembly, Trafficking and Specificity. Subcellular Biochemistry, vol 63. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4765-4_10

Download citation

Publish with us

Policies and ethics