Skip to main content

Engineered Zinc Finger Nucleases for Targeted Genome Editing

  • Chapter
  • First Online:
Site-directed insertion of transgenes

Part of the book series: Topics in Current Genetics ((TCG,volume 23))

Abstract

Zinc finger nucleases (ZFNs) are artificial proteins consisting of engineered zinc finger proteins fused to the FokI endonuclease domain. These nucleases bind to specific DNA recognition sites and introduce double-strand breaks (DSBs). Repair of these DSBs by normal cellular processes can be exploited to either disrupt genes or significantly increase the frequency of homologous recombination with a user-defined repair template. Several platforms have been developed that enable engineering of zinc finger proteins that bind with high affinity and specificity to 9–18 bp target DNA sequences. ZFNs have already been used in basic research, most prominently with the development of methods to efficiently modify various model organisms and cell lines.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alwin S, Gere MB, Guhl E, Effertz K, Barbas CF 3rd, Segal DJ, Weitzman MD, Cathomen T (2005) Custom zinc-finger nucleases for use in human cells. Mol Ther 12:610–617

    Article  CAS  Google Scholar 

  • Bae KH, Kwon YD, Shin HC, Hwang MS, Ryu EH, Park KS, Yang HY, Lee DK, Lee Y, Park J, Kwon HS, Kim HW, Yeh BI, Lee HW, Sohn SH, Yoon J, Seol W, Kim JS (2003) Human zinc fingers as building blocks in the construction of artificial transcription factors. Nat Biotechnol 21:275–280

    Article  CAS  Google Scholar 

  • Beerli RR, Segal DJ, Dreier B, Barbas CF 3rd (1998) Toward controlling gene expression at will: specific regulation of the erbB-2/HER-2 promoter by using polydactyl zinc finger proteins constructed from modular building blocks. Proc Natl Acad Sci USA 95:14628–14633

    Article  CAS  Google Scholar 

  • Beerli RR, Dreier B, Barbas CF 3rd (2000) Positive and negative regulation of endogenous genes by designed transcription factors. Proc Natl Acad Sci USA 97:1495–1500

    Article  CAS  Google Scholar 

  • Benabdallah BF, Allard E, Yao S, Friedman G, Gregory PD, Eliopoulos N, Fradette J, Spees JL, Haddad E, Holmes MC, Beausejour CM (2010) Targeted gene addition to human mesenchymal stromal cells as a cell-based plasma-soluble protein delivery platform. Cytotherapy 12:394–399

    Article  CAS  Google Scholar 

  • Bettini M, Xi H, Milbrandt J, Kersh GJ (2002) Thymocyte development in early growth response gene 1-deficient mice. J Immunol 169:1713–1720

    CAS  Google Scholar 

  • Beumer K, Bhattacharyya G, Bibikova M, Trautman JK, Carroll D (2006) Efficient gene targeting in Drosophila with zinc-finger nucleases. Genetics 172:2391–2403

    Article  CAS  Google Scholar 

  • Beumer KJ, Trautman JK, Bozas A, Liu JL, Rutter J, Gall JG, Carroll D (2008) Efficient gene targeting in Drosophila by direct embryo injection with zinc-finger nucleases. Proc Natl Acad Sci USA 105:19821–19826

    Article  CAS  Google Scholar 

  • Bhakta MS, Segal DJ (2010) The generation of zinc finger proteins by modular assembly. Methods Mol Biol 649:3–30

    Article  CAS  Google Scholar 

  • Bibikova M, Carroll D, Segal DJ, Trautman JK, Smith J, Kim YG, Chandrasegaran S (2001) Stimulation of homologous recombination through targeted cleavage by chimeric nucleases. Mol Cell Biol 21:289–297

    Article  CAS  Google Scholar 

  • Bibikova M, Golic M, Golic KG, Carroll D (2002) Targeted chromosomal cleavage and mutagenesis in Drosophila using zinc-finger nucleases. Genetics 161:1169–1175

    CAS  Google Scholar 

  • Bibikova M, Beumer K, Trautman JK, Carroll D (2003) Enhancing gene targeting with designed zinc finger nucleases. Science 300:764

    Article  CAS  Google Scholar 

  • Bitinaite J, Wah DA, Aggarwal AK, Schildkraut I (1998) FokI dimerization is required for DNA cleavage. Proc Natl Acad Sci USA 95:10570–10575

    Article  CAS  Google Scholar 

  • Bozas A, Beumer KJ, Trautman JK, Carroll D (2009) Genetic analysis of zinc-finger nuclease-induced gene targeting in Drosophila. Genetics 182:641–651

    Article  CAS  Google Scholar 

  • Brayer KJ, Kulshreshtha S, Segal DJ (2008) The protein-binding potential of C2H2 zinc finger domains. Cell Biochem Biophys 51:9–19

    Article  CAS  Google Scholar 

  • Brunet E, Simsek D, Tomishima M, Dekelver R, Choi VM, Gregory P, Urnov F, Weinstock DM, Jasin M (2009) Chromosomal translocations induced at specified loci in human stem cells. Proc Natl Acad Sci USA 106:10620–10625

    Article  CAS  Google Scholar 

  • Bulyk ML, Huang X, Choo Y, Church GM (2001) Exploring the DNA-binding specificities of zinc fingers with DNA microarrays. Proc Natl Acad Sci USA 98:7158–7163

    Article  CAS  Google Scholar 

  • Carbery ID, Ji D, Harrington A, Brown V, Weinstein EJ, Liaw L, Cui X (2010) Targeted genome modification in mice using zinc-finger nucleases. Genetics 186:451–459

    Article  CAS  Google Scholar 

  • Cathomen T, Schambach A (2009) Zinc-finger nucleases meet iPS cells: Zinc positive: tailored genome engineering meets reprogramming. Gene Ther 17:1–3

    Article  CAS  Google Scholar 

  • Catto LE, Bellamy SR, Retter SE, Halford SE (2008) Dynamics and consequences of DNA looping by the FokI restriction endonuclease. Nucleic Acids Res 36:2073–2081

    Article  CAS  Google Scholar 

  • Chen F, Pruett-Miller SM, Huang Y, Gjoka M, Duda K, Taunton J, Collingwood TN, Frodin M, Davis GD (2011) High-frequency genome editing using ssDNA oligonucleotides with zinc-finger nucleases. Nat Methods 8(9):753–755

    Article  CAS  Google Scholar 

  • Choo Y, Isalan M (2000) Advances in zinc finger engineering. Curr Opin Struct Biol 10:411–416

    Article  CAS  Google Scholar 

  • Choo Y, Klug A (1994) Selection of DNA binding sites for zinc fingers using rationally randomized DNA reveals coded interactions. Proc Natl Acad Sci USA 91:11168–11172

    Article  CAS  Google Scholar 

  • Choo Y, Sanchez-Garcia I, Klug A (1994) In vivo repression by a site-specific DNA-binding protein designed against an oncogenic sequence. Nature 372:642–645

    Article  CAS  Google Scholar 

  • Cornu TI, Cathomen T (2007) Targeted genome modifications using integrase-deficient lentiviral vectors. Mol Ther 15:2107–2113

    Article  CAS  Google Scholar 

  • Cornu TI, Thibodeau-Beganny S, Guhl E, Alwin S, Eichtinger M, Joung JK, Cathomen T (2008) DNA-binding specificity is a major determinant of the activity and toxicity of zinc-finger nucleases. Mol Ther 16:352–358

    Article  CAS  Google Scholar 

  • Cost GJ, Freyvert Y, Vafiadis A, Santiago Y, Miller JC, Rebar E, Collingwood TN, Snowden A, Gregory PD (2009) BAK and BAX deletion using zinc-finger nucleases yields apoptosis-resistant CHO cells. Biotechnol Bioeng 105:330–340

    Article  CAS  Google Scholar 

  • Cradick TJ, Ambrosini G, Iseli C, Bucher P, McCaffrey AP (2011) ZFN-Site searches genomes for zinc finger nuclease target sites and off-target sites. BMC Bioinformatics 12:152

    Article  CAS  Google Scholar 

  • Cristea S, Gregory PD, Urnov FD, Cost GJ (2011) Dissection of splicing regulation at an endogenous locus by zinc-finger nuclease-mediated gene editing. PLoS One 6:e16961

    Article  CAS  Google Scholar 

  • Cui X, Ji D, Fisher DA, Wu Y, Briner DM, Weinstein EJ (2010) Targeted integration in rat and mouse embryos with zinc-finger nucleases. Nat Biotechnol 29:64–67

    Article  CAS  Google Scholar 

  • Dekelver RC, Choi VM, Moehle EA, Paschon DE, Hockemeyer D, Meijsing SH, Sancak Y, Cui X, Steine EJ, Miller JC, Tam P, Bartsevich VV, Meng X, Rupniewski I, Gopalan SM, Sun HC, Pitz KJ, Rock JM, Zhang L, Davis GD, Rebar EJ, Cheeseman IM, Yamamoto KR, Sabatini DM, Jaenisch R, Gregory PD, Urnov FD (2010) Functional genomics, proteomics, and regulatory DNA analysis in isogenic settings using zinc finger nuclease-driven transgenesis into a safe harbor locus in the human genome. Genome Res 20:1133–1142

    Article  CAS  Google Scholar 

  • Donoho G, Jasin M, Berg P (1998) Analysis of gene targeting and intrachromosomal homologous recombination stimulated by genomic double-strand breaks in mouse embryonic stem cells. Mol Cell Biol 18:4070–4078

    CAS  Google Scholar 

  • Doyon Y, McCammon JM, Miller JC, Faraji F, Ngo C, Katibah GE, Amora R, Hocking TD, Zhang L, Rebar EJ, Gregory PD, Urnov FD, Amacher SL (2008) Heritable targeted gene disruption in zebrafish using designed zinc-finger nucleases. Nat Biotechnol 26:702–708

    Article  CAS  Google Scholar 

  • Doyon Y, Choi VM, Xia DF, Vo TD, Gregory PD, Holmes MC (2010a) Transient cold shock enhances zinc-finger nuclease-mediated gene disruption. Nat Methods 7:459–460

    Article  CAS  Google Scholar 

  • Doyon Y, Vo TD, Mendel MC, Greenberg SG, Wang J, Xia DF, Miller JC, Urnov FD, Gregory PD, Holmes MC (2010b) Enhancing zinc-finger-nuclease activity with improved obligate heterodimeric architectures. Nat Methods 8:74–79

    Article  CAS  Google Scholar 

  • Doyon JB, Zeitler B, Cheng J, Cheng AT, Cherone JM, Santiago Y, Lee AH, Vo TD, Doyon Y, Miller JC, Paschon DE, Zhang L, Rebar EJ, Gregory PD, Urnov FD, Drubin DG (2011) Rapid and efficient clathrin-mediated endocytosis revealed in genome-edited mammalian cells. Nat Cell Biol 13:331–337

    Article  CAS  Google Scholar 

  • Elliott B, Richardson C, Winderbaum J, Nickoloff JA, Jasin M (1998) Gene conversion tracts from double-strand break repair in mammalian cells. Mol Cell Biol 18:93–101

    CAS  Google Scholar 

  • Elrod-Erickson M, Benson TE, Pabo CO (1998) High-resolution structures of variant Zif268-DNA complexes: implications for understanding zinc finger-DNA recognition. Structure 6:451–464

    Article  CAS  Google Scholar 

  • Falke D, Fisher M, Ye D, Juliano RL (2003) Design of artificial transcription factors to selectively regulate the pro-apoptotic bax gene. Nucleic Acids Res 31:e10

    Article  CAS  Google Scholar 

  • Flisikowska T, Thorey IS, Offner S, Ros F, Lifke V, Zeitler B, Rottmann O, Vincent A, Zhang L, Jenkins S, Niersbach H, Kind AJ, Gregory PD, Schnieke AE, Platzer J (2011) Efficient immunoglobulin gene disruption and targeted replacement in rabbit using zinc finger nucleases. PLoS One 6:e21045

    Article  CAS  Google Scholar 

  • Foley JE, Maeder ML, Pearlberg J, Joung JK, Peterson RT, Yeh JR (2009a) Targeted mutagenesis in zebrafish using customized zinc-finger nucleases. Nat Protoc 4:1855–1867

    Article  CAS  Google Scholar 

  • Foley JE, Yeh JR, Maeder ML, Reyon D, Sander JD, Peterson RT, Joung JK (2009b) Rapid mutation of endogenous zebrafish genes using zinc finger nucleases made by Oligomerized Pool ENgineering (OPEN). PLoS One 4:e4348

    Article  CAS  Google Scholar 

  • Furman JL, Mok PW, Badran AH, Ghosh I (2011) Turn-On DNA Damage Sensors for the Direct Detection of 8-Oxoguanine and Photoproducts in Native DNA. J Am Chem Soc 133(32):12518–12527

    Article  CAS  Google Scholar 

  • Gabriel R, Lombardo A, Arens A, Miller JC, Genovese P, Kaeppel C, Nowrouzi A, Bartholomae CC, Wang J, Friedman G, Holmes MC, Gregory PD, Glimm H, Schmidt M, Naldini L, von Kalle C (2011) An unbiased genome-wide analysis of zinc-finger nuclease specificity. Nat Biotechnol 29(9):816–823

    Article  CAS  Google Scholar 

  • Gaj T, Mercer AC, Gersbach CA, Gordley RM, Barbas CF 3rd (2011) Structure-guided reprogramming of serine recombinase DNA sequence specificity. Proc Natl Acad Sci USA 108:498–503

    Article  Google Scholar 

  • Gellhaus K, Cornu TI, Heilbronn R, Cathomen T (2009) Fate of recombinant adeno-associated viral vector genomes during DNA double-strand break-induced gene targeting in human cells. Hum Gene Ther 21:543–553

    Article  CAS  Google Scholar 

  • Gersbach CA, Gaj T, Gordley RM, Barbas CF 3rd (2010) Directed evolution of recombinase specificity by split gene reassembly. Nucleic Acids Res 38:4198–4206

    Article  CAS  Google Scholar 

  • Gersbach CA, Gaj T, Gordley RM, Mercer AC, Barbas CF 3rd (2011) Targeted plasmid integration into the human genome by an engineered zinc-finger recombinase. Nucleic Acids Res 39(17):7868–7878

    Article  CAS  Google Scholar 

  • Geurts AM, Cost GJ, Freyvert Y, Zeitler B, Miller JC, Choi VM, Jenkins SS, Wood A, Cui X, Meng X, Vincent A, Lam S, Michalkiewicz M, Schilling R, Foeckler J, Kalloway S, Weiler H, Menoret S, Anegon I, Davis GD, Zhang L, Rebar EJ, Gregory PD, Urnov FD, Jacob HJ, Buelow R (2009a) Knockout rats via embryo microinjection of zinc-finger nucleases. Science 325:433

    Article  CAS  Google Scholar 

  • Geurts AM, Cost GJ, Remy S, Cui X, Tesson L, Usal C, Menoret S, Jacob HJ, Anegon I, Buelow R (2009b) Generation of gene-specific mutated rats using zinc-finger nucleases. Methods Mol Biol 597:211–225

    Article  CAS  Google Scholar 

  • Ghosh I, Stains CI, Ooi AT, Segal DJ (2006) Direct detection of double-stranded DNA: Molecular methods and applications for DNA diagnostics. Mol Biosyst 2:551–560

    Article  CAS  Google Scholar 

  • Goldberg AD, Banaszynski LA, Noh KM, Lewis PW, Elsaesser SJ, Stadler S, Dewell S, Law M, Guo X, Li X, Wen D, Chapgier A, Dekelver RC, Miller JC, Lee YL, Boydston EA, Holmes MC, Gregory PD, Greally JM, Rafii S, Yang C, Scambler PJ, Garrick D, Gibbons RJ, Higgs DR, Cristea IM, Urnov FD, Zheng D, Allis CD (2010) Distinct factors control histone variant H3.3 localization at specific genomic regions. Cell 140:678–691

    Article  CAS  Google Scholar 

  • Gordley RM, Smith JD, Graslund T, Barbas CF 3rd (2007) Evolution of programmable zinc finger-recombinases with activity in human cells. J Mol Biol 367:802–813

    Article  CAS  Google Scholar 

  • Gordley RM, Gersbach CA, Barbas CF 3rd (2009) Synthesis of programmable integrases. Proc Natl Acad Sci USA 106:5053–5058

    Article  CAS  Google Scholar 

  • Greisman HA, Pabo CO (1997) A general strategy for selecting high-affinity zinc finger proteins for diverse DNA target sites. Science 275:657–661

    Article  CAS  Google Scholar 

  • Guo J, Gaj T, Barbas CF 3rd (2010) Directed evolution of an enhanced and highly efficient FokI cleavage domain for zinc finger nucleases. J Mol Biol 400:96–107

    Article  CAS  Google Scholar 

  • Gupta A, Meng X, Zhu LJ, Lawson ND, Wolfe SA (2010) Zinc finger protein-dependent and -independent contributions to the in vivo off-target activity of zinc finger nucleases. Nucleic Acids Res 39:381–392

    Article  CAS  Google Scholar 

  • Guschin DY, Waite AJ, Katibah GE, Miller JC, Holmes MC, Rebar EJ (2010) A rapid and general assay for monitoring endogenous gene modification. Methods Mol Biol 649:247–256

    Article  CAS  Google Scholar 

  • Halford SE, Catto LE, Pernstich C, Rusling DA, Sanders KL (2011) The reaction mechanism of FokI excludes the possibility of targeting zinc finger nucleases to unique DNA sites. Biochem Soc Trans 39:584–588

    Article  CAS  Google Scholar 

  • Handel EM, Cathomen T (2010) Zinc-finger nuclease based genome surgery: it’s all about specificity. Curr Gene Ther 11:28–37

    Article  Google Scholar 

  • Handel EM, Alwin S, Cathomen T (2009) Expanding or restricting the target site repertoire of zinc-finger nucleases: the inter-domain linker as a major determinant of target site selectivity. Mol Ther 17:104–111

    Article  CAS  Google Scholar 

  • Hartlerode AJ, Scully R (2009) Mechanisms of double-strand break repair in somatic mammalian cells. Biochem J 423:157–168

    Article  CAS  Google Scholar 

  • Hartlerode A, Odate S, Shim I, Brown J, Scully R (2011) Cell cycle-dependent induction of homologous recombination by a tightly regulated I-SceI fusion protein. PLoS One 6:e16501

    Article  CAS  Google Scholar 

  • Herrmann F, Garriga-Canut M, Baumstark R, Fajardo-Sanchez E, Cotterell J, Minoche A, Himmelbauer H, Isalan M (2011) p53 gene repair with zinc finger nucleases optimised by Yeast 1-Hybrid and validated by Solexa sequencing. PLoS One 6:e20913

    Article  CAS  Google Scholar 

  • Hockemeyer D, Jaenisch R (2011) Gene targeting in human pluripotent cells. Cold Spring Harb Symp Quant Biol 75:201–209

    Article  CAS  Google Scholar 

  • Hockemeyer D, Soldner F, Beard C, Gao Q, Mitalipova M, Dekelver RC, Katibah GE, Amora R, Boydston EA, Zeitler B, Meng X, Miller JC, Zhang L, Rebar EJ, Gregory PD, Urnov FD, Jaenisch R (2009) Efficient targeting of expressed and silent genes in human ESCs and iPSCs using zinc-finger nucleases. Nat Biotechnol 27:851–857

    Article  CAS  Google Scholar 

  • Holt N, Wang J, Kim K, Friedman G, Wang X, Taupin V, Crooks GM, Kohn DB, Gregory PD, Holmes MC, Cannon PM (2010) Human hematopoietic stem/progenitor cells modified by zinc-finger nucleases targeted to CCR5 control HIV-1 in vivo. Nat Biotechnol 28:839–847

    Article  CAS  Google Scholar 

  • Hurt JA, Thibodeau SA, Hirsh AS, Pabo CO, Joung JK (2003) Highly specific zinc finger proteins obtained by directed domain shuffling and cell-based selection. Proc Natl Acad Sci USA 100:12271–12276

    Article  CAS  Google Scholar 

  • Isalan M, Choo Y (2001) Rapid, high-throughput engineering of sequence-specific zinc finger DNA-binding proteins. Methods Enzymol 340:593–609

    Article  CAS  Google Scholar 

  • Isalan M, Klug A, Choo Y (2001) A rapid, generally applicable method to engineer zinc fingers illustrated by targeting the HIV-1 promoter. Nat Biotechnol 19:656–660

    Article  CAS  Google Scholar 

  • Jamieson AC, Kim SH, Wells JA (1994) In vitro selection of zinc fingers with altered DNA-binding specificity. Biochemistry 33:5689–5695

    Article  CAS  Google Scholar 

  • Jamieson AC, Miller JC, Pabo CO (2003) Drug discovery with engineered zinc-finger proteins. Nat Rev Drug Discov 2:361–368

    Article  CAS  Google Scholar 

  • Jamieson AC, Guan B, Cradick TJ, Xiao H, Holmes MC, Gregory PD, Carroll PM (2006) Controlling gene expression in Drosophila using engineered zinc finger protein transcription factors. Biochem Biophys Res Commun 348:873–879

    Article  CAS  Google Scholar 

  • Jasin M (1996) Genetic manipulation of genomes with rare-cutting endonucleases. Trends Genet 12:224–228

    Article  CAS  Google Scholar 

  • Jensen NM, Dalsgaard T, Jakobsen M, Nielsen RR, Sorensen CB, Bolund L, Jensen TG (2011) An update on targeted gene repair in mammalian cells: methods and mechanisms. J Biomed Sci 18:10

    Article  CAS  Google Scholar 

  • Joung JK, Ramm EI, Pabo CO (2000) A bacterial two-hybrid selection system for studying protein-DNA and protein-protein interactions. Proc Natl Acad Sci USA 97:7382–7387

    Article  CAS  Google Scholar 

  • Joung JK, Voytas DF, Cathomen T (2010) Reply to “Genome editing with modularly assembled zinc-finger nucleases”. Nat Methods 7:91–92

    Article  CAS  Google Scholar 

  • Jouvenot Y, Ginjala V, Zhang L, Liu PQ, Oshimura M, Feinberg AP, Wolffe AP, Ohlsson R, Gregory PD (2003) Targeted regulation of imprinted genes by synthetic zinc-finger transcription factors. Gene Ther 10:513–522

    Article  CAS  Google Scholar 

  • Kim YG, Cha J, Chandrasegaran S (1996) Hybrid restriction enzymes: zinc finger fusions to Fok I cleavage domain. Proc Natl Acad Sci USA 93:1156–1160

    Article  CAS  Google Scholar 

  • Kim HJ, Lee HJ, Kim H, Cho SW, Kim JS (2009) Targeted genome editing in human cells with zinc finger nucleases constructed via modular assembly. Genome Res 19:1279–1288

    Article  CAS  Google Scholar 

  • Kim JS, Lee HJ, Carroll D (2010) Genome editing with modularly assembled zinc-finger nucleases. Nat Methods 7:91, author reply 91–2

    Article  CAS  Google Scholar 

  • Lee MS, Gippert GP, Soman KV, Case DA, Wright PE (1989) Three-dimensional solution structure of a single zinc finger DNA-binding domain. Science 245:635–637

    Article  CAS  Google Scholar 

  • Lee HJ, Kim E, Kim JS (2009) Targeted chromosomal deletions in human cells using zinc finger nucleases. Genome Res 20:81–89

    Article  CAS  Google Scholar 

  • Li L, Wu LP, Chandrasegaran S (1992) Functional domains in Fok I restriction endonuclease. Proc Natl Acad Sci USA 89:4275–4279

    Article  CAS  Google Scholar 

  • Li H, Haurigot V, Doyon Y, Li T, Wong SY, Bhagwat AS, Malani N, Anguela XM, Sharma R, Ivanciu L, Murphy SL, Finn JD, Khazi FR, Zhou S, Paschon DE, Rebar EJ, Bushman FD, Gregory PD, Holmes MC, High KA (2011) In vivo genome editing restores haemostasis in a mouse model of haemophilia. Nature 475:217–221

    Article  CAS  Google Scholar 

  • Liu J, Stormo GD (2005) Combining SELEX with quantitative assays to rapidly obtain accurate models of protein-DNA interactions. Nucleic Acids Res 33:e141

    Article  Google Scholar 

  • Liu PQ, Rebar EJ, Zhang L, Liu Q, Jamieson AC, Liang Y, Qi H, Li PX, Chen B, Mendel MC, Zhong X, Lee YL, Eisenberg SP, Spratt SK, Case CC, Wolffe AP (2001) Regulation of an endogenous locus using a panel of designed zinc finger proteins targeted to accessible chromatin regions. Activation of vascular endothelial growth factor A J Biol Chem 276:11323–11334

    CAS  Google Scholar 

  • Liu Q, Xia Z, Zhong X, Case CC (2002) Validated zinc finger protein designs for all 16 GNN DNA triplet targets. J Biol Chem 277:3850–3856

    Article  CAS  Google Scholar 

  • Liu PQ, Chan EM, Cost GJ, Zhang L, Wang J, Miller JC, Guschin DY, Reik A, Holmes MC, Mott JE, Collingwood TN, Gregory PD (2010) Generation of a triple-gene knockout mammalian cell line using engineered zinc-finger nucleases. Biotechnol Bioeng 106:97–105

    CAS  Google Scholar 

  • Lloyd A, Plaisier CL, Carroll D, Drews GN (2005) Targeted mutagenesis using zinc-finger nucleases in Arabidopsis. Proc Natl Acad Sci USA 102:2232–2237

    Article  CAS  Google Scholar 

  • Lombardo A, Genovese P, Beausejour CM, Colleoni S, Lee YL, Kim KA, Ando D, Urnov FD, Galli C, Gregory PD, Holmes MC, Naldini L (2007) Gene editing in human stem cells using zinc finger nucleases and integrase-defective lentiviral vector delivery. Nat Biotechnol 25:1298–1306

    Article  CAS  Google Scholar 

  • Lombardo A, Cesana D, Genovese P, Di Stefano B, Provasi E, Colombo DF, Neri M, Magnani Z, Cantore A, Lo Riso P, Damo M, Pello OM, Holmes MC, Gregory PD, Gritti A, Broccoli V, BONINI C, NALDINI L (2011) Site-specific integration and tailoring of cassette design for sustainable gene transfer. Nat Methods 8(10):861–869

    Article  CAS  Google Scholar 

  • Maeder ML, Thibodeau-Beganny S, Osiak A, Wright DA, Anthony RM, Eichtinger M, Jiang T, Foley JE, Winfrey RJ, Townsend JA, Unger-Wallace E, Sander JD, Muller-Lerch F, Fu F, Pearlberg J, Gobel C, Dassie JP, Pruett-Miller SM, Porteus MH, Sgroi DC, Iafrate AJ, Dobbs D, McCray PB Jr, Cathomen T, Voytas DF, Joung JK (2008) Rapid “open-source” engineering of customized zinc-finger nucleases for highly efficient gene modification. Mol Cell 31:294–301

    Article  CAS  Google Scholar 

  • Maeder ML, Thibodeau-Beganny S, Sander JD, Voytas DF, Joung JK (2009) Oligomerized pool engineering (OPEN): an ‘open-source’ protocol for making customized zinc-finger arrays. Nat Protoc 4:1471–1501

    Article  CAS  Google Scholar 

  • Mao Z, Bozzella M, Seluanov A, Gorbunova V (2008) DNA repair by nonhomologous end joining and homologous recombination during cell cycle in human cells. Cell Cycle 7:2902–2906

    Article  CAS  Google Scholar 

  • Mashimo T, Takizawa A, Voigt B, Yoshimi K, Hiai H, Kuramoto T, Serikawa T (2010) Generation of knockout rats with X-linked severe combined immunodeficiency (X-SCID) using zinc-finger nucleases. PLoS One 5:e8870

    Article  CAS  Google Scholar 

  • Meister GE, Chandrasegaran S, Ostermeier M (2009) Heterodimeric DNA methyltransferases as a platform for creating designer zinc finger methyltransferases for targeted DNA methylation in cells. Nucleic Acids Res 38:1749–1759

    Article  CAS  Google Scholar 

  • Meng X, Thibodeau-Beganny S, Jiang T, Joung JK, Wolfe SA (2007) Profiling the DNA-binding specificities of engineered Cys2His2 zinc finger domains using a rapid cell-based method. Nucleic Acids Res 35:e81

    Article  CAS  Google Scholar 

  • Meng X, Noyes MB, Zhu LJ, Lawson ND, Wolfe SA (2008) Targeted gene inactivation in zebrafish using engineered zinc-finger nucleases. Nat Biotechnol 26:695–701

    Article  CAS  Google Scholar 

  • Meyer M, de Angelis MH, Wurst W, Kuhn R (2010) Gene targeting by homologous recombination in mouse zygotes mediated by zinc-finger nucleases. Proc Natl Acad Sci USA 107:15022–15026

    Article  CAS  Google Scholar 

  • Miller J, McLachlan AD, Klug A (1985) Repetitive zinc-binding domains in the protein transcription factor IIIA from Xenopus oocytes. EMBO J 4:1609–1614

    CAS  Google Scholar 

  • Miller JC, Holmes MC, Wang J, Guschin DY, Lee YL, Rupniewski I, Beausejour CM, Waite AJ, Wang NS, Kim KA, Gregory PD, Pabo CO, Rebar EJ (2007) An improved zinc-finger nuclease architecture for highly specific genome editing. Nat Biotechnol 25:778–785

    Article  CAS  Google Scholar 

  • Minczuk M (2010) Engineered zinc finger proteins for manipulation of the human mitochondrial genome. Methods Mol Biol 649:257–270

    Article  CAS  Google Scholar 

  • Minczuk M, Papworth MA, Miller JC, Murphy MP, Klug A (2008) Development of a single-chain, quasi-dimeric zinc-finger nuclease for the selective degradation of mutated human mitochondrial DNA. Nucleic Acids Res 36:3926–3938

    Article  CAS  Google Scholar 

  • Minczuk M, Kolasinska-Zwierz P, Murphy MP, Papworth MA (2010) Construction and testing of engineered zinc-finger proteins for sequence-specific modification of mtDNA. Nat Protoc 5:342–356

    Article  CAS  Google Scholar 

  • Mino T, Aoyama Y, Sera T (2009) Efficient double-stranded DNA cleavage by artificial zinc-finger nucleases composed of one zinc-finger protein and a single-chain FokI dimer. J Biotechnol 140:156–161

    Article  CAS  Google Scholar 

  • Moehle EA, Rock JM, Lee YL, Jouvenot Y, Dekelver RC, Gregory PD, Urnov FD, Holmes MC (2007) Targeted gene addition into a specified location in the human genome using designed zinc finger nucleases. Proc Natl Acad Sci USA 104:3055–3060

    Article  CAS  Google Scholar 

  • Moore M, Klug A, Choo Y (2001) Improved DNA binding specificity from polyzinc finger peptides by using strings of two-finger units. Proc Natl Acad Sci USA 98:1437–1441

    Article  CAS  Google Scholar 

  • Moreno C, Hoffman M, Stodola TJ, Didier DN, Lazar J, Geurts AM, North PE, Jacob HJ, Greene AS (2011) Creation and characterization of a renin knockout rat. Hypertension 57:614–619

    Article  CAS  Google Scholar 

  • Mori T, Kagatsume I, Shinomiya K, Aoyama Y, Sera T (2009) Sandwiched zinc-finger nucleases harboring a single-chain FokI dimer as a DNA-cleavage domain. Biochem Biophys Res Commun 390:694–697

    Article  CAS  Google Scholar 

  • Morton J, Davis MW, Jorgensen EM, Carroll D (2006) Induction and repair of zinc-finger nuclease-targeted double-strand breaks in Caenorhabditis elegans somatic cells. Proc Natl Acad Sci USA 103:16370–16375

    Article  CAS  Google Scholar 

  • Nomura W, Barbas CF 3rd (2007) In vivo site-specific DNA methylation with a designed sequence-enabled DNA methylase. J Am Chem Soc 129:8676–8677

    Article  CAS  Google Scholar 

  • Ochiai H, Fujita K, Suzuki K, Nishikawa M, Shibata T, Sakamoto N, Yamamoto T (2010) Targeted mutagenesis in the sea urchin embryo using zinc-finger nucleases. Genes Cells 15:875–885

    CAS  Google Scholar 

  • Oleykowski CA, Bronson Mullins CR, Godwin AK, Yeung AT (1998) Mutation detection using a novel plant endonuclease. Nucleic Acids Res 26:4597–4602

    Article  CAS  Google Scholar 

  • Olsen PA, Solhaug A, Booth JA, Gelazauskaite M, Krauss S (2009) Cellular responses to targeted genomic sequence modification using single-stranded oligonucleotides and zinc-finger nucleases. DNA Repair (Amst) 8:298–308

    Article  CAS  Google Scholar 

  • Olsen PA, Gelazauskaite M, Randol M, Krauss S (2010) Analysis of illegitimate genomic integration mediated by zinc-finger nucleases: implications for specificity of targeted gene correction. BMC Mol Biol 11:35

    Article  CAS  Google Scholar 

  • Ooi AT, Stains CI, Ghosh I, Segal DJ (2006) Sequence-enabled reassembly of beta-lactamase (SEER-LAC): a sensitive method for the detection of double-stranded DNA. Biochemistry 45:3620–3625

    Article  CAS  Google Scholar 

  • Orlando SJ, Santiago Y, Dekelver RC, Freyvert Y, Boydston EA, Moehle EA, Choi VM, Gopalan SM, Lou JF, Li J, Miller JC, Holmes MC, Gregory PD, Urnov FD, Cost GJ (2010) Zinc-finger nuclease-driven targeted integration into mammalian genomes using donors with limited chromosomal homology. Nucleic Acids Res 38:e152

    Article  CAS  Google Scholar 

  • Osborn MJ, Defeo AP, Blazar B, Tolar J (2011) Synthetic zinc finger nuclease design and rapid assembly. Hum Gene Ther 22(9):1155–1165

    Article  CAS  Google Scholar 

  • Parraga G, Horvath SJ, Eisen A, Taylor WE, Hood L, Young ET, Klevit RE (1988) Zinc-dependent structure of a single-finger domain of yeast ADR1. Science 241:1489–1492

    Article  CAS  Google Scholar 

  • Pattanayak V, Ramirez CL, Joung JK, Liu DR (2011) Revealing off-target cleavage specificities of zinc-finger nucleases by in vitro selection. Nat Methods 8(9):765–770

    Article  CAS  Google Scholar 

  • Pavletich NP, Pabo CO (1991) Zinc finger-DNA recognition: crystal structure of a Zif268-DNA complex at 2.1 A. Science 252:809–817

    Article  CAS  Google Scholar 

  • Pearson H (2008) Protein engineering: the fate of fingers. Nature 455:160–164

    Article  CAS  Google Scholar 

  • Peng WJ, Chang CM, Lin TH (2002) Target integration by a chimeric Sp1 zinc finger domain-Moloney murine leukemia virus integrase in vivo. J Biomed Sci 9:171–184

    Article  CAS  Google Scholar 

  • Perez EE, Wang J, Miller JC, Jouvenot Y, Kim KA, Liu O, Wang N, Lee G, Bartsevich VV, Lee YL, Guschin DY, Rupniewski I, Waite AJ, Carpenito C, Carroll RG, Orange JS, Urnov FD, Rebar EJ, Ando D, Gregory PD, Riley JL, Holmes MC, June CH (2008) Establishment of HIV-1 resistance in CD4+ T cells by genome editing using zinc-finger nucleases. Nat Biotechnol 26:808–816

    Article  CAS  Google Scholar 

  • Pingoud A, Fuxreiter M, Pingoud V, Wende W (2005) Type II restriction endonucleases: structure and mechanism. Cell Mol Life Sci 62:685–707

    Article  CAS  Google Scholar 

  • Porteus MH, Baltimore D (2003) Chimeric nucleases stimulate gene targeting in human cells. Science 300:763

    Article  Google Scholar 

  • Porteus MH, Cathomen T, Weitzman MD, Baltimore D (2003) Efficient gene targeting mediated by adeno-associated virus and DNA double-strand breaks. Mol Cell Biol 23:3558–3565

    Article  CAS  Google Scholar 

  • Pruett-Miller SM, Connelly JP, Maeder ML, Joung JK, Porteus MH (2008) Comparison of zinc finger nucleases for use in gene targeting in mammalian cells. Mol Ther 16:707–717

    Article  CAS  Google Scholar 

  • Pruett-Miller SM, Reading DW, Porter SN, Porteus MH (2009) Attenuation of zinc finger nuclease toxicity by small-molecule regulation of protein levels. PLoS Genet 5:e1000376

    Article  CAS  Google Scholar 

  • Radecke F, Peter I, Radecke S, Gellhaus K, Schwarz K, Cathomen T (2006) Targeted chromosomal gene modification in human cells by single-stranded oligodeoxynucleotides in the presence of a DNA double-strand break. Mol Ther 14:798–808

    Article  CAS  Google Scholar 

  • Radecke S, Radecke F, Cathomen T, Schwarz K (2010) Zinc-finger nuclease-induced gene repair with oligodeoxynucleotides: wanted and unwanted target locus modifications. Mol Ther 18:743–753

    Article  CAS  Google Scholar 

  • Rahman SH, Maeder ML, Joung JK, Cathomen T (2011) Zinc-finger nucleases for somatic gene therapy: the next frontier. Hum Gene Ther 22(8):925–933

    Article  CAS  Google Scholar 

  • Ramalingam S, Kandavelou K, Rajenderan R, Chandrasegaran S (2010) Creating designed zinc-finger nucleases with minimal cytotoxicity. J Mol Biol 405:630–641

    Article  CAS  Google Scholar 

  • Ramirez CL, Foley JE, Wright DA, Muller-Lerch F, Rahman SH, Cornu TI, Winfrey RJ, Sander JD, Fu F, Townsend JA, Cathomen T, Voytas DF, Joung JK (2008) Unexpected failure rates for modular assembly of engineered zinc fingers. Nat Methods 5:374–375

    Article  CAS  Google Scholar 

  • Rebar EJ, Pabo CO (1994) Zinc finger phage: affinity selection of fingers with new DNA-binding specificities. Science 263:671–673

    Article  CAS  Google Scholar 

  • Rebar EJ, Huang Y, Hickey R, Nath AK, Meoli D, Nath S, Chen B, Xu L, Liang Y, Jamieson AC, Zhang L, Spratt SK, Case CC, Wolffe A, Giordano FJ (2002) Induction of angiogenesis in a mouse model using engineered transcription factors. Nat Med 8:1427–1432

    Article  CAS  Google Scholar 

  • Ren D, Collingwood TN, Rebar EJ, Wolffe AP, Camp HS (2002) PPARgamma knockdown by engineered transcription factors: exogenous PPARgamma2 but not PPARgamma1 reactivates adipogenesis. Genes Dev 16:27–32

    Article  CAS  Google Scholar 

  • Reyon D, Kirkpatrick JR, Sander JD, Zhang F, Voytas DF, Joung JK, Dobbs D, Coffman CR (2011) ZFNGenome: a comprehensive resource for locating zinc finger nuclease target sites in model organisms. BMC Genomics 12:83

    Article  CAS  Google Scholar 

  • Rouet P, Smih F, Jasin M (1994) Expression of a site-specific endonuclease stimulates homologous recombination in mammalian cells. Proc Natl Acad Sci USA 91:6064–6068

    Article  CAS  Google Scholar 

  • Sander JD, Zaback P, Joung JK, Voytas DF, Dobbs D (2007) Zinc Finger Targeter (ZiFiT): an engineered zinc finger/target site design tool. Nucleic Acids Res 35:W599–W605

    Article  Google Scholar 

  • Sander JD, Zaback P, Joung JK, Voytas DF, Dobbs D (2009) An affinity-based scoring scheme for predicting DNA-binding activities of modularly assembled zinc-finger proteins. Nucleic Acids Res 37:506–515

    Article  CAS  Google Scholar 

  • Sander JD, Maeder ML, Reyon D, Voytas DF, Joung JK, Dobbs D (2010a) ZiFiT (Zinc Finger Targeter): an updated zinc finger engineering tool. Nucleic Acids Res 38:W462–W468

    Article  CAS  Google Scholar 

  • Sander JD, Reyon D, Maeder ML, Foley JE, Thibodeau-Beganny S, Li X, Regan MR, Dahlborg EJ, Goodwin MJ, Fu F, Voytas DF, Joung JK, Dobbs D (2010b) Predicting success of oligomerized pool engineering (OPEN) for zinc finger target site sequences. BMC Bioinformatics 11:543

    Article  CAS  Google Scholar 

  • Sander JD, Dahlborg EJ, Goodwin MJ, Cade L, Zhang F, Cifuentes D, Curtin SJ, Blackburn JS, Thibodeau-Beganny S, Qi Y, Pierick CJ, Hoffman E, Maeder ML, Khayter C, Reyon D, Dobbs D, Langenau DM, Stupar RM, Giraldez AJ, Voytas DF, Peterson RT, Yeh JR, Joung JK (2011) Selection-free zinc-finger-nuclease engineering by context-dependent assembly (CoDA). Nat Methods 8:67–69

    Article  CAS  Google Scholar 

  • Santiago Y, Chan E, Liu PQ, Orlando S, Zhang L, Urnov FD, Holmes MC, Guschin D, Waite A, Miller JC, Rebar EJ, Gregory PD, Klug A, Collingwood TN (2008) Targeted gene knockout in mammalian cells by using engineered zinc-finger nucleases. Proc Natl Acad Sci USA 105:5809–5814

    Article  CAS  Google Scholar 

  • Sebastiano V, Maeder ML, Angstman JF, Haddad B, Khayter C, Yeo DT, Goodwin MJ, Hawkins JS, Ramirez CL, Batista LF, Artandi SE, Wernig M, Joung KJ (2011) In Situ Genetic Correction of the Sickle Cell Anemia Mutation in Human Induced Pluripotent Stem Cells Using Engineered Zinc Finger Nucleases. Stem Cells 29(11):1717–1726

    Article  CAS  Google Scholar 

  • Segal DJ, Dreier B, Beerli RR, Barbas CF 3rd (1999) Toward controlling gene expression at will: selection and design of zinc finger domains recognizing each of the 5′-GNN-3′ DNA target sequences. Proc Natl Acad Sci USA 96:2758–2763

    Article  CAS  Google Scholar 

  • Segal DJ, Beerli RR, Blancafort P, Dreier B, Effertz K, Huber A, Koksch B, Lund CV, Magnenat L, Valente D, Barbas CF 3rd (2003) Evaluation of a modular strategy for the construction of novel polydactyl zinc finger DNA-binding proteins. Biochemistry 42:2137–2148

    Article  CAS  Google Scholar 

  • Shukla VK, Doyon Y, Miller JC, DeKelver RC, Moehle EA, Worden SE, Mitchell JC, Arnold NL, Gopalan S, Meng X. et al. (2009) Precise genome modification in the crop species Zea mays using zinc-finger nucleases. Nature 459:437–441

    Google Scholar 

  • Simsek D, Brunet E, Wong SY, Katyal S, Gao Y, McKinnon PJ, Lou J, Zhang L, Li J, Rebar EJ, Gregory PD, Holmes MC, Jasin M (2011) DNA ligase III promotes alternative nonhomologous end-joining during chromosomal translocation formation. PLoS Genet 7:e1002080

    Article  CAS  Google Scholar 

  • Snowden AW, Gregory PD, Case CC, Pabo CO (2002) Gene-specific targeting of H3K9 methylation is sufficient for initiating repression in vivo. Curr Biol 12:2159–2166

    Article  CAS  Google Scholar 

  • Soldner F, Laganiere J, Cheng AW, Hockemeyer D, Gao Q, Alagappan R, Khurana V, Golbe LI, Myers RH, Lindquist S, Zhang L, Guschin D, Fong LK, Vu BJ, Meng X, Urnov FD, Rebar EJ, Gregory PD, Zhang HS, Jaenisch R (2011) Generation of isogenic pluripotent stem cells differing exclusively at two early onset Parkinson point mutations. Cell 146:318–331

    Article  CAS  Google Scholar 

  • Sollu C, Pars K, Cornu TI, Thibodeau-Beganny S, Maeder ML, Joung JK, Heilbronn R, Cathomen T (2010) Autonomous zinc-finger nuclease pairs for targeted chromosomal deletion. Nucleic Acids Res 38:8269–8276

    Article  CAS  Google Scholar 

  • Stains CI, Porter JR, Ooi AT, Segal DJ, Ghosh I (2005) DNA sequence-enabled reassembly of the green fluorescent protein. J Am Chem Soc 127:10782–10783

    Article  CAS  Google Scholar 

  • Stolzenburg S, Bilsland A, Keith WN, Rots MG (2010) Modulation of gene expression using zinc finger-based artificial transcription factors. Methods Mol Biol 649:117–132

    Article  CAS  Google Scholar 

  • Szczepek M, Brondani V, Buchel J, Serrano L, Segal DJ, Cathomen T (2007) Structure-based redesign of the dimerization interface reduces the toxicity of zinc-finger nucleases. Nat Biotechnol 25:786–793

    Article  CAS  Google Scholar 

  • Takasu Y, Kobayashi I, Beumer K, Uchino K, Sezutsu H, Sajwan S, Carroll D, Tamura T, Zurovec M (2010) Targeted mutagenesis in the silkworm Bombyx mori using zinc finger nuclease mRNA injection. Insect Biochem Mol Biol 40:759–765

    Article  CAS  Google Scholar 

  • Takata M, Sasaki MS, Sonoda E, Morrison C, Hashimoto M, Utsumi H, Yamaguchi-Iwai Y, Shinohara A, Takeda S (1998) Homologous recombination and non-homologous end-joining pathways of DNA double-strand break repair have overlapping roles in the maintenance of chromosomal integrity in vertebrate cells. EMBO J 17:5497–5508

    Article  CAS  Google Scholar 

  • Tan W, Zhu K, Segal DJ, Barbas CF 3rd, CHOW SA (2004) Fusion proteins consisting of human immunodeficiency virus type 1 integrase and the designed polydactyl zinc finger protein E2C direct integration of viral DNA into specific sites. J Virol 78:1301–1313

    Article  CAS  Google Scholar 

  • Tan W, Dong Z, Wilkinson TA, Barbas CF 3rd, CHOW SA (2006) Human immunodeficiency virus type 1 incorporated with fusion proteins consisting of integrase and the designed polydactyl zinc finger protein E2C can bias integration of viral DNA into a predetermined chromosomal region in human cells. J Virol 80:1939–1948

    Article  CAS  Google Scholar 

  • Townsend JA, Wright DA, Winfrey RJ, Fu F, Maeder ML, Joung JK, Voytas DF (2009) High-frequency modification of plant genes using engineered zinc-finger nucleases. Nature 459:442–445

    Article  CAS  Google Scholar 

  • Tupler R, Perini G, Green MR (2001) Expressing the human genome. Nature 409:832–833

    Article  CAS  Google Scholar 

  • Urnov FD (2002) A feel for the template: zinc finger protein transcription factors and chromatin. Biochem Cell Biol 80:321–333

    Article  CAS  Google Scholar 

  • Urnov FD, Miller JC, Lee YL, Beausejour CM, Rock JM, Augustus S, Jamieson AC, Porteus MH, Gregory PD, Holmes MC (2005) Highly efficient endogenous human gene correction using designed zinc-finger nucleases. Nature 435:646–651

    Article  CAS  Google Scholar 

  • van Gent DC, Hoeijmakers JH, Kanaar R (2001) Chromosomal stability and the DNA double-stranded break connection. Nat Rev Genet 2:196–206

    Article  Google Scholar 

  • Watanabe M, Umeyama K, Matsunari H, Takayanagi S, Haruyama E, Nakano K, Fujiwara T, Ikezawa Y, Nakauchi H, Nagashima H (2010) Knockout of exogenous EGFP gene in porcine somatic cells using zinc-finger nucleases. Biochem Biophys Res Commun 402:14–18

    Article  CAS  Google Scholar 

  • Whyte JJ, Zhao J, Wells KD, Samuel MS, Whitworth KM, Walters EM, Laughlin MH, Prather RS (2011) Gene targeting with zinc finger nucleases to produce cloned eGFP knockout pigs. Mol Reprod Dev 78:2

    Article  CAS  Google Scholar 

  • Wigler M, Sweet R, Sim GK, Wold B, Pellicer A, Lacy E, Maniatis T, Silverstein S, Axel R (1979) Transformation of mammalian cells with genes from procaryotes and eucaryotes. Cell 16:777–785

    Article  CAS  Google Scholar 

  • Wilen CB, Wang J, Tilton JC, Miller JC, Kim KA, Rebar EJ, Sherrill-Mix SA, Patro SC, Secreto AJ, Jordan AP, Lee G, Kahn J, Aye PP, Bunnell BA, Lackner AA, Hoxie JA, Danet-Desnoyers GA, Bushman FD, Riley JL, Gregory PD, June CH, Holmes MC, Doms RW (2011) Engineering HIV-resistant human CD4+ T cells with CXCR4-specific zinc-finger nucleases. PLoS Pathog 7:e1002020

    Article  CAS  Google Scholar 

  • Wolfe SA, Greisman HA, Ramm EI, Pabo CO (1999) Analysis of zinc fingers optimized via phage display: evaluating the utility of a recognition code. J Mol Biol 285:1917–1934

    Article  CAS  Google Scholar 

  • Wolfe SA, Grant RA, Elrod-Erickson M, Pabo CO (2001) Beyond the “recognition code”: structures of two Cys2His2 zinc finger/TATA box complexes. Structure 9:717–723

    Article  CAS  Google Scholar 

  • Wolfe SA, Ramm EI, Pabo CO (2000) Combining structure-based design with phage display to create new Cys(2)His(2) zinc finger dimers. Structure, 8:739–750

    Google Scholar 

  • Wood AJ, Lo T, Zeitler B, Pickle CS, Ralston EJ, Lee AH, Amora R, Miller JC, Leung E, Meng X, Zhang L, Rebar EJ, Gregory PD, Urnov FD, Meyer BJ (2011) Targeted Genome Editing Across Species Using ZFNs and TALENs. Science 333(6040):307

    Article  CAS  Google Scholar 

  • Wright DA, Townsend JA, Winfrey RJ Jr, Irwin PA, Rajagopal J, Lonosky PM, Hall BD, Jondle MD, Voytas DF (2005) High-frequency homologous recombination in plants mediated by zinc-finger nucleases. Plant J 44:693–705

    Article  CAS  Google Scholar 

  • Wright DA, Thibodeau-Beganny S, Sander JD, Winfrey RJ, Hirsh AS, Eichtinger M, Fu F, Porteus MH, Dobbs D, Voytas DF, Joung JK (2006) Standardized reagents and protocols for engineering zinc finger nucleases by modular assembly. Nat Protoc 1:1637–1652

    Article  Google Scholar 

  • Wu H, Yang WP, Barbas CF 3rd (1995) Building zinc fingers by selection: toward a therapeutic application. Proc Natl Acad Sci USA 92:344–348

    Article  CAS  Google Scholar 

  • Yang D, Yang H, Li W, Zhao B, Ouyang Z, Liu Z, Zhao Y, Fan N, Song J, Tian J, Li F, Zhang J, Chang L, Pei D, Chen YE, Lai L (2011) Generation of PPARgamma mono-allelic knockout pigs via zinc-finger nucleases and nuclear transfer cloning. Cell Res 21:979–982

    Article  CAS  Google Scholar 

  • Yanover C, Bradley P (2011) Extensive protein and DNA backbone sampling improves structure-based specificity prediction for C2H2 zinc fingers. Nucleic Acids Res 39(11):4564–4576

    Article  CAS  Google Scholar 

  • Young JJ, Cherone JM, Doyon Y, Ankoudinova I, Faraji FM, Lee AH, Ngo C, Guschin DY, Paschon DE, Miller JC. et al. (2011) Efficient targeted gene disruption in the soma and germ line of the frog Xenopus tropicalis using engineered zinc-finger nucleases. Proc Natl Acad Sci USA 108:7052–7057

    Google Scholar 

  • Zhang L, Spratt SK, Liu Q, Johnstone B, Qi H, Raschke EE, Jamieson AC, Rebar EJ, Wolffe AP, Case CC (2000) Synthetic zinc finger transcription factor action at an endogenous chromosomal site. Activation of the human erythropoietin gene. J Biol Chem 275:33850–33860

    Article  CAS  Google Scholar 

  • Zhang F, Maeder ML, Unger-Wallace E, Hoshaw JP, Reyon D, Christian M, Li X, Pierick CJ, Dobbs D, Peterson T, Joung JK, Voytas DF (2010) High frequency targeted mutagenesis in Arabidopsis thaliana using zinc finger nucleases. Proc Natl Acad Sci USA 107:12028–12033

    Article  CAS  Google Scholar 

  • Zou J, Maeder ML, Mali P, Pruett-Miller SM, Thibodeau-Beganny S, Chou BK, Chen G, Ye Z, Park IH, Daley GQ, Porteus MH, Joung JK, Cheng L (2009) Gene targeting of a disease-related gene in human induced pluripotent stem and embryonic stem cells. Cell Stem Cell 5:97–110

    Article  CAS  Google Scholar 

  • Zou J, Cochran R, Cheng L (2010) Double knockouts in human embryonic stem cells. Cell Res 20:250–252

    Article  Google Scholar 

  • Zou J, Sweeney CL, Chou BK, Choi U, Pan J, Wang H, Dowey SN, Cheng L, Malech HL (2011) Oxidase-deficient neutrophils from X-linked chronic granulomatous disease iPS cells: functional correction by zinc finger nuclease-mediated safe harbor targeting. Blood 117:5561–5572

    Article  CAS  Google Scholar 

  • Zykovich A, Korf I, Segal DJ (2009) Bind-n-Seq: high-throughput analysis of in vitro protein-DNA interactions using massively parallel sequencing. Nucleic Acids Res 37:e151

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank members of the Joung lab for helpful comments and suggestions. We thank Victor Quesada for assistance with the development of Fig. 5.1. C.L.R. is partially supported by the National Science Foundation and the Ford Foundation. J.K.J is supported by National Institutes of Health (NIH) R01 GM088040, an NIH Director’s Pioneer Award (DP1 OD006862), and the Massachusetts General Hospital Jim and Ann Orr Research Scholar Award.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Keith Joung .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Ramirez, C.L., Joung, J.K. (2013). Engineered Zinc Finger Nucleases for Targeted Genome Editing. In: Renault, S., Duchateau, P. (eds) Site-directed insertion of transgenes. Topics in Current Genetics, vol 23. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4531-5_5

Download citation

Publish with us

Policies and ethics